Category Archives: Problem Solving

Any questions about this video?

As part of preparing for our impending move from Indy to Grand Rapids, my family and I have made a couple of visits to the area. These by necessity combine business with pleasure, since our three kids (ages 2, 5, and 7) don’t handle extended amounts of business well. On the last visit, we spent some time at the Grand Rapids Childrens Museum, the second floor of which is full of stuff that could occupy children — and mathematicians — for hours. This “exhibit” was, for me, one of the most evocative. Have a look:

I asked this on Twitter a few days ago, but I’ll repost it here: In the spirit of Dan Meyer’s Any Questions? meme, what questions come to mind as you watch this? Particularly math, physics, etc. questions.

One other thing — just after I wrapped up the video on this, someone put one of the little discs rolling on the turntable and it did about a dozen graceful, perfect three-point hypocycloids before falling off the table.

Enhanced by Zemanta
Advertisements

3 Comments

Filed under Geometry, Math, Problem Solving

A problem with “problems”

I have a bone to pick with problems like the following, which is taken from a major university-level calculus textbook. Read it, and see if you can figure out what I mean.

This is located in the latter one-fourth of a review set for the chapter on integration. Its position in the set suggests it is less routine, less rote than one of the early problems. But what’s wrong with this problem is that it’s not a problem at all. It’s an exercise. The difference between the two is enormous. To risk oversimplifying, in an exercise, the person doing the exercise knows exactly what to do at the very beginning to obtain the information being requested. In a problem, the person doesn’t. What makes an exercise an exercise is its familiarity and congruity with prior exercises. What makes a problem a problem is the lack of these things.

The above is not a problem, it is an exercise. Use the Midpoint Rule with six subintervals from 0 to 24. That’s the only part of the statement that you even have to read! The rest of it has absolutely nothing with bees, the rate of their population growth, or the net amount of population growth. A student might be turning this in to an instructor who takes off points for incorrect or missing units, and then you have to think about bees and time. Otherwise, this exercise is pure pseudocontext.

Worst of all, this exercise might correctly assess students’ abilities to execute a numerical integration algorithm, but it doesn’t come close to measuring whether a student understands what an integral is in the first place and why we are even bringing them up. Even if the student realizes an integral should be used, there’s no discussion of how to choose which method and which parameters within the method, or why. Instead, the exercise flatly tells students not only to use an integral, but what method to use and even how many subdivisions. A student can get a 100% correct answer and have no earthly idea what integration has to do with the question.

A simple fix to the problem statement will change this into a problem. Keep the graph the same and change the text to:

The graph below shows the rate at which a population of honeybees was growing, in bees per week. By about how many bees did the population grow after 24 weeks?

This still may not be a full-blown problem yet — and it’s still pretty pseudocontextual, and the student can guess there should be an integral happening because it’s in the review section for the chapter on integration —  but at least now we have to think a lot harder about what to do, and the questions we have to answer are better. How do I get a total change when I’m given a rate? Why can’t I just find the height of the graph at 24? And once we realize that we have to use an integral — and being able to make that realization is one of the main learning objectives of this chapter, or at least it should be — there are more questions. Can I do this with an antiderivative? Can I use geometry in some way? Should I use the Midpoint Rule or some other method? Can I get by with, say, six rectangles? or four? or even two? Why not use 24, or 2400? Is it OK just the guesstimate the area by counting boxes?

I think we who teach calculus and those who write calculus books must do a better job of giving problems to students and not just increasingly complicated exercises. It’s very easy to do so; we just have to give less information and fewer artificial cues to students, and force students to think hard and critically about their tools and how to select the right combination of tools for the job. No doubt, this makes grading harder, but students aren’t going to learn calculus in any real or lasting sense if they don’t grapple with these kinds of problems.

Enhanced by Zemanta

4 Comments

Filed under Calculus, Critical thinking, Math, Problem Solving, Teaching

What correlates with problem solving skill?

About a year ago, I started partitioning up my Calculus tests into three sections: Concepts, Mechanics, and Problem Solving. The point values for each are 25, 25, and 50 respectively. The Concepts items are intended to be ones where no calculations are to be performed; instead students answer questions, interpret meanings of results, and draw conclusions based only on graphs, tables, or verbal descriptions. The Mechanics items are just straight-up calculations with no context, like “take the derivative of y = \sqrt{x^2 + 1}“. The Problem-Solving items are a mix of conceptual and mechanical tasks and can be either instances of things the students have seen before (e.g. optimzation or related rates problems) or some novel situation that is related to, but not identical to, the things they’ve done on homework and so on.

I did this to stress to students that the main goal of taking a calculus class is to learn how to solve problems effectively, and that conceptual mastery and mechanical mastery, while different from and to some extent independent of each other, both flow into mastery of problem-solving like tributaries to a river. It also helps me identify specific areas of improvement; if the class’ Mechanics average is high but the Concepts average is low, it tells me we need to work more on Concepts.

I just gave my third (of four) tests to my two sections of Calculus, and for the first time I started paying attention to the relationships between the scores on each section, and it felt like there were some interesting relationships happening between the sections of the test. So I decided to do not only my usual boxplot analysis of the individual parts but to make three scatter plots, pairing off Mechanics vs. Concepts, Problem Solving vs. Concepts, and Mechanics vs. Problem Solving, and look for trends.

Here’s the plot for Mechanics vs. Concepts:

That r-value of 0.6155 is statistically significant at the 0.01 level. Likewise, here’s Problem Solving vs. Concepts:

The r-value here of 0.5570 is obviously less than the first one, but it’s still statistically significant at the 0.01 level.

But check out the Problem Solving vs. Mechanics plot:

There’s a slight upward trend, but it looks disarrayed; and in fact the r = 0.3911 is significant only at the 0.05 level.

What all this suggests is that there is a stronger relationship between conceptual knowledge and mechanics, and between conceptual knowledge and problem solving skill, than there is between mechanical mastery and problem solving skill. In other words, while there appears to be some positive relationship between the ability simply to calculate and the ability to solve problems that involve calculation (are we clear on the difference between those two things?), the relationship between the ability to answer calculus questions involving no calculation and the ability to solve problems that do involve calculation is stronger — and so is the relationship between no-calculation problems and the ability to calculate, which seems really counterintuitive.

If this relationship holds in general — and I think that it does, and I’m not the only one — then clearly the environment most likely to teach calculus students how to be effective problem solvers is not the classroom primarily focused on computation. A healthy, interacting mixture of conceptual and mechanical work — with a primary emphasis on conceptual understanding — would seem to be what we need instead. The fact that this kind of environment stands in stark contrast to the typical calculus experience (both in the way we run our classes and the pedagogy implied in the books we choose) is something well worth considering.

Enhanced by Zemanta

11 Comments

Filed under Calculus, Critical thinking, Education, Higher ed, Math, Peer instruction, Problem Solving, Teaching

This week in screencasting: Optimization-palooza

My calculus class hit optimization problems this week — or it might be better to say the class got hit by optimization problems. These are tough problems because of all their many moving parts, especially the fact that one of those parts is to build the model you plan to optimize. Most of my students have had calculus in high school, but too many calculus courses in high school as well as college focus almost primarily on algorithms for computation and spend little to no time with how to create a model in the first place. Classes that are so structured are doing massive harm to students in a number of ways, but that’s for another post or two.

Careful study of worked-out examples is an essential part of understanding optimization problems (though not the only part, and this alone isn’t sufficient). The textbook has a few of these. The professor can provide more, but class time really isn’t best spent just by having the professor put examples on the board. Class time should also be spent working on optimization problems with the professor there to provide guidance. And since I can’t spend 8-10 class days both working examples and giving students time to work themselves, screencasts on optimization problems have been the obvious solution.

This week I did screencasts for four problems. Here they are (one problem needed two screencasts):

To my students’ great credit, they have embraced YouTube as a great source of help in calculus. They’ve utilized not only these screencasts but many other ones, most of them excellently produced, and now doing a search on YouTube is an essential component of studying for many of them. I think that’s a great approach, obviously.

Enhanced by Zemanta

1 Comment

Filed under Calculus, Education, Educational technology, Inverted classroom, Math, Problem Solving, Screencasts, Teaching, Technology, Weekly features

Why change how we teach?

Sometimes when I read or hear discussions of innovation or change in teaching mathematics or other STEM disciplines, whether it’s me or somebody else doing the discussing, inevitably there’s the following response:

What do we need all that change for? After all, calculus [or whatever] hasn’t changed that much in 400 years, has it?

I’m not a historian of mathematics, so I can’t say how much calculus has or hasn’t changed since the times of Newton and Leibniz or even Euler. But I can say that the context in which calculus is situated has changed — utterly. And it’s those changes that surround calculus that are forcing the teaching of calculus (any many other STEM subjects) to change –radically.

What are those changes?

First, the practical problems that need to be solved and the methods used to solve them have changed. Not too long ago, practical problems could be neatly compartmentalized and solved using a very small palette of methods. I know some things about those problems from my Dad, who was an electrical engineer for 40 years and was with NASA during the Gemini and Apollo projects. The kinds of problems he’d get were: Design a circuit board for use in the navigational system of the space capsule. While this was a difficult problem that needed trained specialists, it was unambiguous and could be solved with more or less a subset of the average undergraduate electrical engineering curriculum content, plus human ingenuity. And for the most part, the math was done by hand and on slide rules (with a smattering of newfangled mechanical calculators) and the design was done with stuff from a lab — in other words, standard methods and tools for engineers.

Now, however, problems are completely different and cannot be so easily encapsulated. I can again pull an example from my Dad’s work history. During the last decade of his career, the Houston Oilers NFL franchise moved to Tennessee. Dad was employed by the Nashville Electric Service and the problem he was handed was: Design the power grid for the new Oilers stadium. This problem has some similarities with designing the navigational circuitry for a space capsule, but there are major differences as well because this was a civic project as well as a technical one. How do we make the power supply lines work with the existing road and building configurations? What about surrounding businesses and the impact that the design will have on them? How do we make Bud Adams happy with what we’ve done? The problem quickly overruns any simple categorization, and it required that Dad not only use skills other than those he learned in his (very rigorous!) EE curriculum at Texas Tech University, but also to learn new skills on the fly and to work with other non-engineers who have more in the way of those skills than he had. Also, the methods use to solve the problem were radically different. You can’t design a power grid that large using hand tools; you have to use computers, and computers need alternative representations of the models underlying the design. And the methods themselves lead to new problems.

So it is with calculus or almost any STEM discipline these days. Students today will not go on to work with simple, cleanly-defined, well-posed problems that fit neatly into a box. Nor will they be always doing things by hand; they will be using technology to solve problems, and this requires both a different way of representing the models (for calculus, think “functions”) they use and the flexibility to anticipate the problems that the methods themselves create. This is not what Newton or Leibniz had in mind, but it is the way things are. Our teaching must therefore change to give students a fighting chance at solving these problems, by emphasizing multiple representations of functions, multiple methods for solution of problems, and attention to the problems created by the methods. And of course, we also must focus on teaching problem-solving itself and on the ability to acquire new skills and information independently, because if so much has changed between 1965 and 1995, we can expect about the same amount of change in progressively shorter time spans in the future.

Also, the people who solve these problems, and what we know about how those people learn, have changed. It seems undeniable that college students are different than they were even 20 years ago, much less 200 years ago. Although they may not be natively fluent in the use of technology, they are certainly steeped in technology, and technology is a primary means for how they interact with the rest of the world. Students in college today bring a different set of values, a different cultural context, and a different outlook to their lives and how they learn. This executive summary of research done by the Pew Research Foundation goes into detail on the characteristics of the Millenial generation, and the full report (PDF, 1.3 Mb) — in addition to our own experiences — highlights the differences in this generation versus previous ones. These folks are not the same people we taught in 1995; we therefore cannot expect to teach them in the same way and expect equal or better results.

We also know a lot more now about how people in general, and Millenials in particular, learn things than we did just a few years ago. We are gradually, but also rapidly, realizing through rigorous education research that there are other methods of teaching out there besides lecture and that these methods work better than lecture does in many situations. Instructors are honing the research findings into usable tools through innovative classroom practices that yield statistically verifiable improvements over more traditional ways of teaching. Even traditional modes of teaching are finding willing and helpful partners in various technological tools that lend themselves well to classroom use and student learning. And that technology is improving in cost, accessibility, and performance at an exponential pace, to the point where it just doesn’t make sense not to use it or think about ways teaching can be improved through its use.

Finally, and perhaps at the root of the first two, the culture in which these problems, methods, people, and even the mathematics itself is situated has changed. Technology drives much of this culture. Millenials are highly connected to each other and the world around them and have little patience — for better or worse — for the usual linear, abstracted, and (let’s face it) slow ways in which calculus and other STEM subjects are usually presented. The countercultural force that tends to discourage kids from getting into STEM disciplines early on is probably stronger today than it has ever been, and it seems foolish to try to fight that force with the way STEM disciplines have been presented to students in the past.

Millenials are interested to a (perhaps) surprising degree in making the world a better place, which means they are a lot more interested in solving problems and helping people than they are with epsilon-delta definitions and deriving integrals from summation rules. The globalized economy and highly-connected world in which we all live has made almost every problem worth solving multidisciplinary. There is a much higher premium now placed on getting a list of viable solutions to a problem within a brief time span, as opposed to a single, perfectly right answer within an unlimited time span (or in the time span of a timed exam).

Even mathematics itself has a different sort of culture now than it did even just ten years ago. We are seeing the emergence of massively collaborative mathematical research via social media, the rise of computational proofs from controversy to standard practice, and computational science taking a central role among the important scientific questions of our time. Calculus may not have changed much but its role in the larger mathematical enterprise has evolved, just in the last 10-15 years.

In short, everything that lends itself to the creation of meaning in the world today — that is, today’s culture — has changed from what it used to be. Even the things that remain essentially unchanged from their previous states, like calculus, must fit into a context that has changed.

All this change presents challenges and opportunities for STEM educators. It’s challenging to go back to calculus, and other STEM disciplines, and think about things like: What are the essential elements of this subject that really need to be taught, as opposed to just the topics we really like? What new facets or topics need to be factored in? What’s the best way to factor those in, so that students are really prepared to function in the world past college? And, maybe most importantly, How do we know our students are really prepared? There’s a temptation to burrow back in to what worked for us, when faced with such daunting challenges, but that really doesn’t help students much — nor does it tap into the possibilities of making our subjects, and our students, richer.

Enhanced by Zemanta

6 Comments

Filed under Calculus, Education, Educational technology, Engineering, Engineering education, Higher ed, Math, Problem Solving, Teaching, Technology

Student (mis)understanding of the equals sign

Interesting report here (via Reidar Mosvold) about American students’ misunderstanding of the “equals” sign and how that understanding might feed into a host of mathematical issues from elementary school all the way to calculus. According to researchers Robert M. Capraro and Mary Capraro at Texas A&M,

About 70 percent of middle grades students in the United States exhibit misconceptions, but nearly none of the international students in Korea and China have a misunderstanding about the equal sign, and Turkish students exhibited far less incidence of the misconception than the U.S. students.

Robert Capraro, in the video at the link above, makes an interesting point about the “=” sign being used as an operator. He makes a passing reference to calculators, and I wonder if calculators are partly to blame here. After all, if you want to calculate 3+5 on a typical modern calculator, what do you do? You hit “3”, then “+”, then “5”… and then hit the “=” button. The “=” key is performing an action — it’s an operator! In fact, I suspect that if you gave students that sequence of calculator keystrokes and asked them which one performs the mathematical operation, most would say “=” rather than the true operator, “+”. The technology they use, handheld calculators, seems to be training them to think in exactly the wrong way about “=”. What we have labelled as the “=” key on a calculator is really better labelled as “Enter” or “Execute”.

In fact, the old-school HP calculators, like this HP 33c, didn’t have “=” buttons at all:

That’s because these calculators used Reverse Polish Notation, in which the 3 + 5 calculation would have been entered “3”, then “5”, “+”, then “Enter” — and then you’d get an answer. What HP calculators label as “Enter”, on a typical modern calculator would be labelled “=”, and in that syntax lies a lot of the problem, it seems.

The biggest problem I seem to encounter with “=” sign use is that students use it to mark a transition between steps in a problem. For example, when solving the equation 3x - 2 = 10 for x, you might see:

3x - 2 = 10 = 12 = x = 4

The thought process can be teased out of this atrocious syntax, but clearly this is not acceptable math — even though the last bit of that line (x=4) is a correct statement. If the student would just put spaces, tabs, or even a semicolon between the steps, it would be a big improvement. But many students are so trained to believe that the right answer — the ending “4” — is all that matters, they have little experience with crafting a good solution, or even realizing that a mathematical solution is supposed to be a form of communication at all.

What are some of the student misconceptions you’ve seen (or perpetrated!) with the “=” sign? If you’re a teacher, how have you approached mending those misconceptions?

Enhanced by Zemanta

12 Comments

Filed under Calculators, Education, Educational technology, Math, Problem Solving, Teaching, Technology

Calculus and conceptual frameworks

I was having a conversation recently with a colleague who might be teaching a section of our intro programming course this fall. In sharing my experiences about teaching programming from the MATLAB course, I mentioned that the thing that is really hard about teaching programming is that students often lack a conceptual framework for what they’re learning. That is, they lack a mental structure into which they can place the topics and concepts they’re learning and then see those ideas in their proper place and relationship to each other. Expert learners — like some students who are taking an intro programming course but have been coding since they were 6 years old — have this framework, and the course is a breeze. Others, possibly a large majority of students in a class, have never done any kind of programming, and they will be incapable of really learning programming until they build a conceptual framework to  handle it. And it’s the prof’s job to help them build it.

Afterwards, I thought, this is why teaching intro programming is harder than teaching calculus. Because students who make it all the way into a college calculus surely have a well-developed conceptual framework for mathematics and can understand where the topics and methods in calculus should fit. Right? Hello?

It then hit me just how wrong I was. Students coming into calculus, even if they’ve had the course before in high school, are not guaranteed to have anything like an appropriate conceptual framework for calculus. Some students may have no conceptual framework at all for calculus — they’ll be like intro programming students who have never coded — and so when they see calculus concepts, they’ll revert back to their conceptual frameworks built in prior math courses, which might be robust and might not be. But even then, students may have multiple, mutually contradictory frameworks for mathematics generally owing to different pedagogies, curricula, or experiences with math in the past.

Take, for example, the typical first contact that calculus students get with actual calculus in the Stewart textbook: The tangent problem. The very first example of section 2.1 is a prototype of this problem, and it reads: Find an equation of the tangent line to the parabola y = x^2 at the point P(1,1). What follows is the usual initial solution: (1) pick a point Q near (1,1), (2) calculate the slope of the secant line, (3) move Q closer to P and recalculate, and then (4) repeat until the differences between successive approximations dips below some tolerance level.

What is a student going to do with this example? The ideal case — what we think of as a proper conceptual handling of the ideas in the example — would be that the student focuses on the nature of the problem (I am trying to find the slope of a tangent line to a graph at a point), the data involved in the problem (I am given the formula for the function and the point where the tangent line goes), and most importantly the motivation for the problem and why we need something new (I’ve never had to calculate the slope of a line given only one point on it). As the student reads the problem, framed properly in this way, s/he learns: I can find the slope of a tangent line using successive approximations of secant lines, if the difference in approximations dips below a certain tolerance level. The student is then ready for example 2 of this section, which is an application to finding the rate at which a charge on a capacitor is discharged. Importantly, there is no formula for the function in example 2, just a graph.

But the problem is that most students adopt a conceptual framework that worked for them in their earlier courses, which can be summarized as: Math is about getting right answers to the odd-numbered exercises in the book. Students using this framework will approach the tangent problem by first homing in on the first available mathematical notation in the example to get cues for what equation to set up. That notation in this case is:

m_{PQ} = \frac{x^2 - 1}{x-1}

Then, in the line below, a specific value of x (1.5) is plugged in. Great! they might think, I’ve got a formula and I just plug a number into it, and I get the right answer: 2.5. But then, reading down a bit further, there are insinuations that the right answer is not 2.5. Stewart says, “…the closer x is to 1…it appears from the tables, the closer m_{PQ} is to 2. This suggests that the slope of the tangent line t should be m = 2.” The student with this framework must then be pretty dismayed. What’s this about “it appears” the answer is 2? Is it 2, or isn’t it? What happened to my 2.5? What’s going on? And then they get to example 2, which has no formula in it at all, and at that point any sane person with this framework would give up.

It’s also worth noting that the Stewart book — and many other standard calculus books — do not introduce this tangent line idea until after a lengthy precalculus review chapter, and that chapter typically looks just like what students saw in their Precalculus courses. These treatments do not attempt to be a ramp-up into calculus, and presages of the concepts of calculus are not present. If prior courses didn’t train students on good conceptual frameworks, then this review material actually makes matters worse when it comes time to really learn calculus. They will know how to plug numbers and expressions into a function, but when the disruptively different math of calculus appears, there’s nowhere to put it, except in the plug-and-chug bin that all prior math has gone into.

So it’s extremely important that students going into calculus get a proper conceptual framework for what to do with the material once they see it. Whose responsibility is that? Everybody’s, starting with…

  • the instructor. The instructor of a calculus class has to be very deliberate and forthright in bending all elements of the course towards the construction of a framework that will support the massive amount of material that will come in a calculus class. This includes telling students that they need a conceptual framework that works, and informing them that perhaps their previous frameworks were not designed to manage the load that’s coming. The instructor also must be relentless in helping students put new material in its proper place and relationship to prior material.
  • But here the textbooks can help, too, by suggesting the framework to be used; it’s certainly better than not specifying the framework at all but just serving up topic after topic as non sequiturs.
  • Finally, students have to work at constructing a framework as well; and they should be held accountable not only for their mastery of micro-level calculus topics like the Chain Rule but also their ability to put two or more concepts in relation to each other and to use prior knowledge on novel tasks.

What are your experiences with helping students (in calculus or otherwise) build useable conceptual frameworks for what they are learning? Any tools (like mindmapping software), assessment methods, or other teaching techniques you’d care to share?

Enhanced by Zemanta

9 Comments

Filed under Calculus, Critical thinking, Education, Educational technology, Math, Problem Solving, Teaching, Technology, Textbooks