Category Archives: Technology

Three things I learned at ScreencastCamp

Last week, I had the chance to attend ScreencastCamp, a weekend event put on by Techsmith, Inc. just down M-6 in Okemos, Michigan. What a great experience! Techsmith develops Camtasia, my go-to software for all screencasting needs, as well as several other great products like Jing and SnagIt. I’ve been a fan of their products for a long time, and it was great to spend time getting to know the people behind them.

ScreencastCamp was an unconference, where there is no set agenda beforehand. Participants just come with an idea of what they want to learn, and then either put on a session or request one. There were about 40 of us participating, mostly from education but with a healthy contingent from the corporate (training) world as well. Amazingly, although this is a relatively small number of participants, all the session slots for Saturday and Sunday filled up almost immediately as people pencilled themselves in to give sessions. It was busy. Some of the sessions were like regular conference talks, while others ended up as discussions among four or five like-minded people sitting around on the sofas in a back area of Techsmith headquarters. The hosts were generous, the food (and the beer!) amazing, and the atmosphere of enthusiasm infectious.

I came away with a lot of great ideas about screencasting, but here are the three that stood out the most.

1. Write careful and complete scripts for your screencasts. Back in my series of “How I Do Screencasting” posts, I wrote that a rough script was the way to go. Now I’m a believer in complete, careful, tightly-written and -edited scripts. What’s so great about a complete script? First of all, I have a tendency to talk fast and speed up as I get going in a screencast. Scripting out what I’m going to say not only helps me to edit my thoughts down to just the essential ideas, it also provides a way to talk at a normal, relaxed pace. Second, having a script printed out in front of me will make it easier to caption my videos, which is something that I want to start doing and indeed may eventually have to do. If I have a script, I can copy and paste the text of my screencast into Camtasia for the captions. It’s a little more complicated than that sounds, but at least I wouldn’t have to transcribe the audio.

Techsmith gave us a copy of the template (MS Word, 66 Kb with a bunch of my own stuff on it) they use for their own screencast scripts. I’ve used this simple form for a series of Maple 15 screencasts I’m working on right now, and it’s really made things go a lot more smoothly than when I was reading from a text file, or making it up as I go.

2. Record your audio first, then your video. This was the most radical idea I heard. I had always recorded the audio and the video simultaneously using Camtasia, but that’s not how Techsmith themselves do it. After writing the script, Techsmith screencasters will read the script and record the audio using Audacity. Then the audio file gets exported into Camtasia as an audio track, and the video part is recorded on top of the audio separately. At first I was very skeptical of this (wouldn’t it be a lot more work?) but after trying it myself, I’m a convert. Recording the audio separately reduces cognitive load — you don’t have to worry about getting both the audio and the video right at the same time — and so both pieces turn out better. Audio is much easier to edit when it’s not attached at the hip to video, I think. And you can focus on the quality of the audio as well. As one Techsmith employee put it, viewers will put up with crappy video as long as the audio is good, but not vice versa.

The way I’ve made this work for me is with the following workflow. First, write a good script using the Techsmith template. Then, read the script into Audacity, putting plenty of “white space” in between each box in the template — this gives viewers a little breathing room while they are watching. Next, go back and edit out any mistakes in the audio, either in Audacity or in Camtasia after the audio has been exported. Then, to record the video, turn off all audio inputs (because you’ve already done the audio), start recording the screen, then start the playback of the audio track and just click along with whatever it is you’re saying from the script. After all, this is what your viewers are going to have to do. Once you’re finished, it’s relatively simple to sync up the audio and video (especially if you keep the whole thing short) by just moving the tracks up and down the Camtasia timeline until it looks like they work. Then trim off the beginning and end of the video to make the video and audio the same length.

3. Get a real microphone. I’ve mentioned before that I’m too cheap to buy a USB microphone when the built-in mic on my Macbook works passably well. But after trying some of the higher-end equipment at Techsmith and hearing what it sounds like on playback, I think I might have to be, well, less cheap. When I recorded my practice screencast in the Techsmith studio, the mic captured the full range of my voice without sounding like I was at the bottom of a well, and no other sound made it into the audio. Part of that is because I was in a studio, as opposed to my office, but part of it is the microphone. It really does make a difference.

I also picked up a ton of little tricks and tips from participants — for example, buy a dog clicker to use when you make a mistake on the audio; the spike it makes in the audio waveform is really clear and it makes it easy to find where you need to edit.

ScreencastCamp was a great experience — amazingly, it was totally free too — and I learned a great deal about how to be a better screencaster. Thanks Techsmith!

10 Comments

Filed under Camtasia, Educational technology, Inverted classroom, Screencasts, Technology

Helping the community with educational technology

A black and white icon of a hand on a clicker,...

Image via Wikipedia

Many people associated with educational technology are driven by a passion for helping students learn using technology in a classroom setting. But I wonder if many ed tech people — either researchers or rank-and-file teachers who teach with technology — ever consider a slightly different role, voiced here by Seymour Papert:

Many education reforms failed because parents did not understand or could not accept what their children were doing. Remember the New Math? This time there will be many who have not had the personal experience necessary to appreciate fully the multiple ways in which digital media can augment intellectual productivity. The people who do can make a major contribution to the success of the new initiative by helping others in their communities understand the potential. And being helpful will do much more than improve the uses of the computers. The computers could be a catalyst for turning our communities into “learning communities.”

So true. So much of education falls to the immediate family, and yet often there are technological innovations in the classroom which fail to be supported at home for the simple reason that parents and other family members don’t understand the technology. Ed tech people can make a real impact by simply turning their talents toward this issue.

Question for you all in the comments: How? It seems that the ways that ed tech people use to communicate their thoughts are exactly the ones off the radar screen of the people who need the  most help — Twitter, blogs, conference talks, YouTube videos, etc. You would need to get on the level with the parent trying to help their kid in a medium that they, the parents, understand. How is that best done? Newsletters? Phone hotlines? Take-home fact and instruction sheets? Give me some ideas here.

(h/t The Daily Papert)

1 Comment

Filed under Early education, Education, Educational technology, High school, Technology

How I make screencasts: The whiteboard screencast

In this post, the fifth in a series of posts on how I make screencasts, I’m going to focus on what I call the “whiteboard” screencast. This is a screencast where I am demoing some sort of concept or calculation by writing things down, rather than clicking through a Keynote presentation or typing something on the screen. It’s intended to mimic the live presentation of content on a whiteboard, hence my name for it.

Of course the most well-known examples of “whiteboard” screencasts are the videos at Khan Academy. In the unlikely event you haven’t seen a Khan Academy video before, here’s one:

I do whiteboard screencasts fairly often. I use them sometimes for presenting hand calculations for students to watch and work through before class, and sometimes (probably more frequently) I use them to create additional examples for things I’ve covered in class. This is a really powerful use of screencasts — students often want more examples than there is time for in a class meeting, and whiteboard screencasts give me a way to give students as many examples as they can dream up.

The basic principles of whiteboard screencasts are the same as for other screencasts. You first have to engage in basic planning, which involves defining a tight and coherent scope for your screencast and writing out a script. For whiteboard screencasting, which is more free-form than lecture capture using Keynote or PowerPoint, the scripting process has to be a little more rigorous. Because it’s easy for me to get carried away when talking about something that matters to me, I find it very helpful to work out in advance everything that I am going to do in the screencast, in the order and position on the screen that I intend to do it. I don’t always read words from a script, but in order to make the screencast logical and coherent, I do storyboard what I am going to do and practice with the drawings, erasures, and such. Very little of what I do in a whiteboard screencast is ad-libbed. (If I were better at ad-libbing, that might be different.)

So I will start a whiteboard screencast with something like a mind-map of the topic or topics I intend to address and one, maybe two, examples of that topic. Additional topics go into additional screencasts. I work those examples all the way through to ensure that there are no math or other mistakes and that I don’t get stuck in one of my own calculations. If you think about it, this is just the same kind of planning that goes into a successful whiteboard lecture, so this process is not entirely alien to instructors.

Once the screencast is properly planned, it’s time to put it together. This is where it gets technically somewhat complicated. But a lot of people ask me about the tools I use to make whiteboard screencasts, so hopefully this will be worth it. I use four main tools for doing whiteboard screencasts:

  • Keynote; I’ll explain in a minute.
  • Camtasia, which we saw in the last post in this series.
  • FlySketch, a software app from Flying Meat (they also make the popular personal wiki software VoodooPad). FlySketch puts a transparent overlay on top of any existing objects on your computer screen and allows you to draw freehand, draw geometric shapes, or type text on the overlay. See the link for screenshots and a more detailed description.
  • A Wacom pen tablet. I currently a Wacom Graphire tablet purchased with a grant a few years ago. With my upcoming job change, I have to hand that in when I leave, so I plan on picking up a Bamboo Pen & Touch this fall.

With those tools, here is the workflow I follow for making a whiteboard screencast.

First, open up Keynote and make a single, blank white slide. This is going to be the “whiteboard” itself. Of course you could also use a blank MS Word document, or any other blank white window or screen. Keynote is just for convenience’s sake.

Next, open up FlySketch and lay it completely over the blank window so that the controls are showing above the top of the window:

Then, open Camtasia and create a custom region that encompasses the “whiteboard”. When the video rolls, it will record what is happening on the whiteboard:

And finally — start the video, and start writing on the FlySketch overlay using the Wacom tablet. Before you start recording, make sure to select the pen color and size you want. If you need to change color, size, or pen type during the screencast — say, you want to switch from freehand writing to typing, or drawing a straight line for an axis — you can tap on the appropriate FlySketch control and Camtasia won’t record it because it’s off-screen.

Then you simply record what you need, then stop, and process the video as was described in the previous post in this series. This includes editing out any mistakes and splicing together multiple video clips for the same screencast.

Here’s an example of the finished product:

Although Sal Khan has been my inspiration for doing screencasts, I’ve made some conscious decisions here to do things differently than Khan does. First, I prefer the white background to the black; it’s more familiar to learners and seems cleaner. I also tend to use thicker pen “tips” than Khan does; I tend to think his pens look a little spidery. Also, the Wacom tablet pen is pressure-sensitive, and that feature works better if the pen tip is thicker. Finally, from a planning perspective, my whiteboard screencasts are a lot less conversational than Khan’s videos. Khan tends to shoot from the hip in terms of presentation; this is part of what makes his videos so charming, but I think it also tends to make his videos go longer than they need to. I prefer to make things a bit more efficient and focused and take less time. It also cuts down on mistakes.

I think the hardest part of this process, for me, was mastering the art of writing on the Wacom tablet in one place and having the writing appear on the screen. This is harder than it sounds! At first my handwriting was horrible (I think at the time I likened it to somebody with a brain injury) but eventually I got my act together. I suspect people learning to play the drums or the piano have to go through the same process before it sounds any good.

Another challenge is managing the relatively small amount of physical space you are working with. A Keynote slide is just not a very large place, and it’s easy to run out of room when writing. If this happens, it can be dealt with by just starting another slide and creating a new video clip. But it’s better for the learner to see one example per slide if possible, and making sure this happens is part of that all-important planning process. I find it helpful to practice the presentation not on the screen or a piece of paper but on a 3 x 5 inch notecard, which has something much closer the same proportions for writing as the Keynote slide on the screen. But note that it does take practice — if you just sit down and try to bang out a whiteboard screencast, it’s likely not to be as good or as instructional as possible, and it could end up taking more time in terms of edits and re-takes than it would if you just planned and practiced in the first place.

I’d be interested in hearing any alternative approaches for making these kinds of screencasts. I once wrote Sal Khan and asked him what his tools were, but never got a response, so I just reverse-engineered what he was doing. There may be a better way. Let me know!

Next up will be the final installment in this series, touching on what I called a “demo” screencast. It’s probably what I do the most. Stay tuned!

11 Comments

Filed under Camtasia, Inverted classroom, Screencasts, Teaching, Technology

How I make screencasts: Lecture capture, part 2

Now that school’s out, I’m going to pick up where I left off (two months ago!) in my series on how I make screencasts. So far I’ve made three posts in this series. In the first post we talked about what a screencast is, exactly, and why anybody would want to make one. In the second post, we saw how the elements of careful planning make screencasting a successful experience. And in the most recent post, we took a look at using Keynote (or PowerPoint) to create a lecture-capture screencast.

Before I talk about the other kinds of screencasts I make, I’m going to take this post to describe how I use my go-to tool for screencasting: Camtasia for Mac, specifically how I use it to make lecture capture videos when I’m not using Keynote. (Full disclosure: I was on the beta-testing team for Camtasia for Mac and got a free license for the software for my efforts. But I can definitely say that I’d gladly have paid the $99 for the software otherwise — it’s that useful.) There is a Windows version of Camtasia and a server-oriented variant called Camtasia Relay, and they are all very similar, so what I describe in this post can be used if lots of different situations.

Let’s suppose I have a lecture or presentation that I want to turn into a screencast, which basically means I need to record the presentation as it happens on the screen and add a voice-over. I’ve already described how to do this with Keynote or PowerPoint, but what if you’re using Prezi, Beamer, or some other presentation tool? What I need is a tool that will record stuff happening on the screen that’s separate from the presentation tool itself. That’s where Camtasia comes in.

Camtasia is software that records video of anything happening on your screen — all of it, or part of it — along with any audio you choose to add, including voiceovers. You can record multiple segments of video, edit those segments, and put it all together with transitions and effects. The interface is laid out a lot like iMovie, so Mac users will feel right at home using it.

There are a lot — seriously, a lot — of options for working with video in Camtasia, too many to get into here. I’ll just show an example of a simple lecture capture putting Prezi and Camtasia together.

First, bring up the screen that has the Prezi in it. (For Prezis particularly, creating the lecture capture works best if you download the Prezi to your local drive and then run it in a window, rather than trying to run it on the web.)

Now launch Camtasia. When you do, a little floating pane will come up that looks like this:

The dropdown menu on the left lets you specify which part of the screen you’re going to capture. I usually just select “YouTube HD/720p”, which records essentially the entire screen. I can crop out what I don’t need later. And once I put it on YouTube (which is my usual destination for screencasts) it’ll be in glorious 720p HD.

Once you’ve selected your area, just click the Record button and start presenting, just as you would if you were giving the lecture in front of a live audience. Your lecture is being recorded behind the scenes and all you see is your screen. Warning: Presenting for a screencast feels a lot different than doing it for a live audience because, well, the audience isn’t there. There’s no body language or ambience to add to the presentation. So this will feel a little unusual at first. Also, I can’t stress enough that you should probably go from a prepared script the first few times you do this, rather than try to wing it. It’ll keep you on track and prevent lots of mistakes.

When you stop recording, you’re brought into the main editing area of Camtasia:

The bottom part of this screen is called the “timeline”. Right now, the one clip that I have in the timeline is a partial video of the presentation. It appears as a chunk of the timeline outlined in blue. Inside the timeline you can see the audio levels given as waveforms, and there’s a playhead along the top of the timeline showing you where you are in the video as well as the time.

At this point, what I usually do is check the sound levels first. A lot of times the built-in microphone on my Macbook doesn’t record very loudly. I’ll listen to a bit of the recorded video to check if that is the case. If so, I go and apply the Dynamics Processor effect to the clip I made:

You apply the clip just by dragging it from the effects area directly onto the clip in the timeline. In fact this is how all the effects, transitions, and other features of Camtasia are applied to video. The Dynamics Processor brings all audio levels up to a uniformly audible setting.

If I have the time, I will watch the whole video from start to finish to see if I’m happy with it. If there’s something I need to edit out — I goofed the script, or sneezed, or the phone rang, etc. — I can go back and edit that part out just by putting the playhead just before the mistake:

Then selecting “Split selected at playhead” from the Edit menu; this splits the video clip in two, right where the blooper is. Then move the playhead until just after the mistake, and selecting “Trim Start to Playhead”. This will crop out the blooper from the second clip. Then you can just drag the second clip over next to the first one, and with that, the blooper is edited out.

The ability to edit in such an easy way really changed screencasting for me. You will make mistakes when you screencast, no matter how good or experienced you get. But you don’t want to have to throw away an entire screencast because of one goof. If I am screencasting and I make a mistake, I just pause for a moment, and then I start again from the point of error. The pause will show up on the audio as a flat spot, and I can go back and edit the error out. You cannot do this with the voiceover features of Keynote and PowerPoint, and it makes a huge difference.

If this is just a straight lecture capture — so there’s no other video coming in from a different source — at this point I’m done. The only thing left to do is add the “credits page” that I always put at the end of my screencasts that lists my email, YouTube channel, Twitter, and so on. I have this saved as a PDF. To bring it into the timeline, I go to Import Media:

and select it from the file finder. It then appears as a clip:

I just drag it into the timeline at the end of the video:

And then, for effect, add a fade-in transition from the video to the credits, which I do by finding it in the transitions menu:

And dragging and dropping it in the little seam between the video clip and the credits page:

Now I’m ready to publish. Camtasia allows me to publish the resulting video directly to my YouTube channel using the Share menu:

As you can see, there are options for iTunes and Screencast.com as well. Or you can just choose “Export…” which exports the video to a file format of your choice, for uploading wherever you want.

After I start the process, Camtasia converts the video to Quicktime and then uploads it with the title I gave it. A 10-minute video will take several minutes to complete this process on a Macbook Pro. Your mileage will vary according to your system hardware and your internet connection. After it’s done uploading, I still have to go to YouTube and add metadata. But otherwise that’s it!

What’s nice about Camtasia is that the tool is separate from the presentation tool you’re using. So if you already have the presentation content made up, you can turn it into a screencast quite easily. It doesn’t matter whether it’s Prezi, Beamer, a text document you’re scrolling down, or anything else. And the more you do this, the easier it gets to convert existing presentation content into a mobile device-friendly screencast.

In the next post, I’ll talk about what I call “whiteboard” screencasts, where I record stuff that I am writing on the screen. This is a lot like what Salman Khan at Khan Academy does. Hopefully it won’t be another two months before I get to that.

Enhanced by Zemanta

1 Comment

Filed under Camtasia, Educational technology, Inverted classroom, Teaching, Technology

Three things I wish Google Documents would let me do

Let me preface this article by saying that I really like Google Documents. It’s a fantastic set of tools that extends basic office functionality to the web in really compelling ways. I’ve been incorporating Google Docs pretty centrally in my courses for the last few years — for example, I no longer hand out paper syllabi on the first day of classes but instead write the syllabi on GDocs and distribute the links; and I’ve given final exams on Google Docs with links to data that are housed in Google Spreadsheets. I love being able to create a document on the web and just leave it there for students (or whoever) to come see, collaborate, and comment — without having to keep track of paper and with virtually zero chance of losing my data. (If Google crashes, we have much bigger problems than the loss of a set of quiz data.)

But like anything, Google Documents isn’t perfect — and in particular, there are at least three things that I wish Google Documents would do that would push my really like-ness to unqualified love:

1. Bring back the old Equation Editor. A couple of years ago, Google rolled out an equation editor for Google Docs that was just beautiful — a small editor that had point-and-click features for adding equations and the ability to parse \LaTeX commands. In other words, it was a mini-\LaTeX editor built right into Google Docs that would implement almost any of the essential functionality of \LaTeX, including matrices, multi-line equations, and more. I remember discovering this editor two years ago and promptly writing up every single one of my linear algebra activities as Google Documents. Then, inexplicably, Google replaced this sweet \LaTeX goodness with a stripped-down equation editor that pales in comparison, supporting only a tiny fraction of \LaTeX‘s command set, and in particular no matrices or multi-line equations. And the “new” editor is clunky and doesn’t seem to produce very good results. I have yet to hear a satisfactory explanation of why this change to a clearly-inferior editor was made. It can’t be because it was overtaxing Google’s system! This is Google, for goodness’ sake, and it’s 2011 — can’t we have a real \LaTeX editor for Google Docs? There’s already one for GMail, you know.

2. Allow comments and discussion threads on PDF’s uploaded to Google Documents. From a teacher’s perspective, one of the most compelling possibilities for Google Docs is to have students upload their class work on Google Docs and then initiate a running discussion thread on that work. Such a thing would replace the usual system of handing in work and having the teacher write comments on it, thereby turning the grading process into something more like a conversation. You can do this with documents created in Google Docs. But if you want students to create mathematical work — since, as I just noted, the current equation editor for GDocs doesn’t get the job done — students would have to create their work in MS Word or \LaTeX, convert to a PDF, and then upload it. No problem, except that discussion threads and comments aren’t allowed on uploaded documents. The option simply isn’t there in the menu system. Google acknowledges that comments and comment threads are only available on newly-created documents, and functionality is coming for older documents — but no word on uploaded documents. If this could be made to happen, grading student work suddenly gets a whole lot more interesting (and valuable for students).

3. Auto-shorten URL’s of links to documents. OK, this is pretty minor, because all I have to do is copy the URL given to me by Google and run it through bit.ly. But since Google already has its own URL shortener, why not just auto-compress the URL using that shortener at the moment the URL is generated? It saves a few clicks and makes users happier because we don’t have to deal with URL’s that are multiple dozens of characters long. And more practically, it makes Google Docs easier for novices to use — many new users (I’m envisioning a good portion of students in my classes who I’d like to get to use Google Docs) have no idea that URL shorteners exist.

What else would you add to this list? Better yet, are there hacks or workarounds that resolve these issues? (Or, thirdly, am I just mistaken on any of this?)

Enhanced by Zemanta

1 Comment

Filed under LaTeX, Social software, Teaching, Technology, Web 2.0

The “golden moment”

We’re in final exams week right now, and last night students in the MATLAB course took their exam. It included some essay questions asking for their favorite elements of the course and things that might be improved in the course. I loved what one of my students had to say about the assignment in the course he found to be the most interesting, so I’ve gotten permission from him to share it. The lab problem he’s referring to was to write a MATLAB program to implement the bisection method for polynomials.

It is really hard to decide which project I found most interesting; there are quite a few of them. If I had to choose just one though, I would probably have to say the lab set for April 6. I was having a really hard time getting the program to work, I spent a while tweaking it this way and that way. But when you’re making a program that does not work yet, there is this sort of golden moment, a moment when you realize what the missing piece is. I remember that moment on my April 6 lab set. After I realized what it was, I could not type it in fast enough I was so excited just to watch the program work. After hitting the play button, that .3 seconds it takes for MATLAB to process the program felt like forever. I actually was devastated that I got an error, and thought I had done it all wrong once again, but then I remembered I had entered the error command so it would display an error. I actually started laughing out loud in the lab, quite obnoxiously actually.

Yes!  As somebody once said, true learning consists in the debugging process. And that’s where the fun in learning happens to lie, too. Let’s give students as many shots as possible to experience this process themselves.

Enhanced by Zemanta

2 Comments

Filed under Critical thinking, Education, Inverted classroom, MATLAB, Teaching, Technology

Targeting the inverted classroom approach

Eigenvector

Image via Wikipedia

A while back I wondered out loud whether it was possible to implement the inverted or “flipped” classroom in a targeted way. Can you invert the classroom for some portions of a course and keep it “normal” for others? Or does inverting the classroom have to be all-or-nothing if it is to work at all? After reading the comments on that piece, I began to think that the targeted approach could work if you handled it right. So I gave it a shot in my linear algebra class (that is coming to a close this week).

The grades in the class come primarily from in-class assessments and take-home assessments. The former are like regular tests and the latter are more like take-home tests with limited collaboration. We had online homework through WeBWorK but otherwise I assigned practice exercises from the book but didn’t take them up. The mix of timed and untimed assessments worked well enough, but the lack of collected homework was not giving us good results. I think the students tended to see the take-home assessments as being the homework, and the WeBWorK and practice problems were just something to look at.

What seemed true to me was that, in order for a targeted inverted classroom approach to work, it has to be packaged differently and carry the weight of significant credit or points in the class. I’ve tried this approach before in other classes but just giving students reading or videos to watch and telling them we’d be doing activities in class rather than a lecture — even assigning  minor credit value to the in-class activity — and you can guess what happened: nobody watched the videos or read the material. The inverted approach didn’t seem different enough to the students to warrant any change in their behaviors toward the class.

So in the linear algebra class, I looked ahead at the course schedule and saw there were at least three points in the class where we were dealing with material that seemed very well-suited to an inverted approach: determinants, eigenvalues and eigenvectors, and inner products. These work well because they start very algorithmically but lead to fairly deep conceptual ideas once the algorithms are over. The out-of-class portions of the inverted approach, where the ball is in the students’ court, can focus on getting the algorithm figured out and getting a taste of the bigger ideas; then the in-class portion can focus on the big ideas. This seems to put the different pieces of the material in the right context — algorithmic stuff in the hands of students, where it plays to their strengths (doing calculations) and conceptual stuff neither in a lecture nor in isolated homework experiences but rather in collaborative work guided by the professor.

To solve the problem of making this approach seem different enough to students, I just stole a page from the sciences and called them “workshops“. In preparation for these three workshops, students needed to watch some videos or read portions of their textbooks and then work through several guided practice exercises to help them meet some baseline competencies they will need before the class meeting. Then, in the class meeting, there would be a five-point quiz taken using clickers over the basic competencies, followed by a set of in-class problems that were done in pairs. A rough draft of work on each of the in-class problems was required at the end of the class meeting, and students were given a couple of days to finish off the final drafts outside of class. The whole package — guided practice, quiz, rough draft, and final draft — counted as a fairly large in-class assessment.

Of course this is precisely what I did every week in the MATLAB course. The only difference is that this is the only way we did things in the MATLAB course. In linear algebra this accounted for three days of class total.

Here are the materials for the workshops we did. The “overview” for each contains a synopsis of the workshop, a list of videos and reading to be done before class, and the guided practice exercises.

The results were really positive. Students really enjoyed doing things this way — it’s way more engaging than a lecture and there is a lot more support than just turning the students out of class to do homework on their own. As you can see, many of the guided practice exercises were just exercises from the textbook — the things I had assigned before but not taken up, only to have them not done at all. Performance on the in-class and take-home assessments went up significantly after introducing workshops.
Additionally, we have three mastery exams that students have to pass with 100% during the course — one on row-reduction, another on matrix operations, and another on determinants. Although determinants form the newest and in some ways the most complex material of these exams, right now that exam has the highest passing rate of the three, and I credit a lot of that to the workshop experience.
So I think the answer to the question “Can the inverted classroom be done in a targeted way?” is YES, provided that:
  • The inverted approach is used in distinct graded assignments that are made to look and feel very distinct from other elements of the course.
  • Teachers make the expectations for out-of-class student work clear by giving an unambiguous list of competencies prior to the out-of-class work.
  • Quality video or reading material is found and used, and not too much of it is assigned. Here, the importance of choosing a textbook — if you must do so — is very important. You have to be able to trust that students can read their books for comprehension on their own outside of class. If not, don’t get the book. I used David Lay’s excellent textbook, plus a mix of Khan Academy videos and my own screencasts.
  • Guided practice exercises are selected so that students experience early success when grappling with the material out of class. Again, textbook selection should be made along those lines.
  • In-class problems are interesting, tied directly to the competency lists and the guided practice, and are doable within a reasonable time frame.
These would serve as guidelines for any inverted classroom approach, but they are especially important for making sure that student learning is as great or greater than the traditional approach — and again, the idea of distinctness seems to be the key for doing this in a targeted way.
What are your suggestions or experiences about using the inverted or “flipped” classroom in a targeted way like this?
Enhanced by Zemanta

2 Comments

Filed under Clickers, Inverted classroom, Linear algebra, MATLAB, Screencasts