Category Archives: Sage

Courses and “something extra”

Some of the most valuable courses I took while I was in school were so because, in addition to learning a specific body of content (and having it taught well), I picked up something extra along the way that turned out to be just as cool or valuable as the course material itself. Examples:

  • I was a psychology major at the beginning of my undergraduate years and made it into the senior-level experiment design course as a sophomore. In that course I learned how to use SPSS (on an Apple IIe!). That was an “extra” that I really enjoyed, perhaps moreso than the experiment I designed. (I wish I still knew how to use it.)
  • In my graduate school differential geometry class (I think that was in 1995), we used Mathematica to plot torus knots and study their curvature and torsion. Learning Mathematica and how to use it for mathematical investigations were the “something extra” that I took from the course. Sadly, the extras have outlived my knowledge of differential geometry. (Sorry, Dr. Ratcliffe.)
  • In the second semester of my graduate school intro abstract algebra class, my prof gave us an assignment to write a computer program to calculate information about certain kinds of rings. This was a small assignment in a class full of big ideas, but I had to go back and re-learn my Pascal in order to write the program, and the idea of writing computer programs to do algebra was a great “extra” that again has stuck with me.

Today I really like to build in an “extra”, usually having something to do with technology, into every course I teach. In calculus, my students learn Winplot, Excel, and Wolfram|Alpha as part of the course. In linear algebra this year I am introducing just enough MATLAB to be dangerous. I use Geometers Sketchpad in my upper-level geometry class, and one former student became so enamored with the software that he started using it for everything, and is now considered the go-to technology person in the school where he teaches. In an independent study I am doing with one of my students on finite fields, I’m having him learn SAGE and do some programming with it. These “extras” often provide an element of fun and applicability to the material, which might be considered dry or monotonous if it’s the only thing you do in the class.

What kinds of “extras” were standouts for you in your coursework? If you’re a teacher, what kinds of “extras” are you using, or would you like to use, in your classes?

Reblog this post [with Zemanta]


Filed under Abstract algebra, Calculus, Computer algebra systems, Education, Geometers Sketchpad, Geometry, Linear algebra, Math, MATLAB, Sage, Teaching, Technology, Wolfram|Alpha

Keeping things in context

Part of Article 131 in the first edition (1801...
Image via Wikipedia

I’ve started reading through Stewart and Tall’s book on algebraic number theory, partly to give myself some fodder for learning Sage and partly because it’s an area of math I’d like to explore. I’m discovering a lot about algebra in the process that I should have known already. For example, I didn’t know until reading this book that the Gaussian integers were invented to study quadratic reciprocity. For me, the Gaussian integers were always just this abstract construction that  Gauss invented evidently for his own amusement (which maybe isn’t too far off from the truth) and which exists primarily so that I would have something to do in abstract algebra class. Here are the Gaussian integers! Now, go and find which ones are units, whether this is a principal ideal domain, and so on. Isn’t this fun?

Well, yes, actually it is fun for me, but that’s because I like abstract nonsense and I like just constructing rings out of nowhere and seeing what works and what doesn’t. But this approach to algebra is a lot harder to convince others to adopt, particularly college math majors whom I teach, most of whom struggle with abstraction. For them, any connection, no matter how tenuous, to the real world is a comfort and a reason to study. Quadratic residues aren’t exactly in the same league as designing airplanes in terms of “real world” utility, but it’s at least something that’s easy enough to understand and explain. Even if you care nothing for real world utility, it’s important to know why something was invented when you are setting about studying it. Otherwise you learn a subject in abstraction and without connections to its roots.

In fact, it seems like a lot of what we take as being canonical in abstract algebra was invented to study number theory. And yet, I have never taken a number theory course, and the number theory that was included in my studies of algebra was added mainly to set up the study of abstract groups and rings, as if to say that number theory exists to make studying algebra easier instead of the other way around as appears to be the case. And it’s not because I had a bad algebra education; I studied under some of the best algebraists around, but I never got the memo that abstract algebra was for something. I learned algebra mainly in isolation for the sole purpose of calculating homotopy groups. Likewise, my entire grad school training was focused on topology, which is supposedly a branch of geometry, but the only course in geometry I have in my background was Mrs. Buttrey’s class at William James Junior High School in the eighth grade — and that didn’t exactly give me the disciplinary perspective I needed to put topology in its proper context. (Even though it was a really good geometry class — thanks Mrs. B!)

I’ve been thinking that my post about the, er, pedagogically challenged way that Stewart Calculus does its examples about instantaneous velocity is really about the idea that you need to make sure that a person learning a new idea has some reason to learn it, before you give it to them in full complexity. Or at least before they’ve finished a course in it. Perhaps this idea extends to all of mathematics and maybe even beyond.

Reblog this post [with Zemanta]


Filed under Abstract algebra, Calculus, Education, Math, Number theory, Sage