Helping the community with educational technology

A black and white icon of a hand on a clicker,...

Image via Wikipedia

Many people associated with educational technology are driven by a passion for helping students learn using technology in a classroom setting. But I wonder if many ed tech people — either researchers or rank-and-file teachers who teach with technology — ever consider a slightly different role, voiced here by Seymour Papert:

Many education reforms failed because parents did not understand or could not accept what their children were doing. Remember the New Math? This time there will be many who have not had the personal experience necessary to appreciate fully the multiple ways in which digital media can augment intellectual productivity. The people who do can make a major contribution to the success of the new initiative by helping others in their communities understand the potential. And being helpful will do much more than improve the uses of the computers. The computers could be a catalyst for turning our communities into “learning communities.”

So true. So much of education falls to the immediate family, and yet often there are technological innovations in the classroom which fail to be supported at home for the simple reason that parents and other family members don’t understand the technology. Ed tech people can make a real impact by simply turning their talents toward this issue.

Question for you all in the comments: How? It seems that the ways that ed tech people use to communicate their thoughts are exactly the ones off the radar screen of the people who need the  most help — Twitter, blogs, conference talks, YouTube videos, etc. You would need to get on the level with the parent trying to help their kid in a medium that they, the parents, understand. How is that best done? Newsletters? Phone hotlines? Take-home fact and instruction sheets? Give me some ideas here.

(h/t The Daily Papert)

1 Comment

Filed under Early education, Education, Educational technology, High school, Technology

How I make screencasts: The whiteboard screencast

In this post, the fifth in a series of posts on how I make screencasts, I’m going to focus on what I call the “whiteboard” screencast. This is a screencast where I am demoing some sort of concept or calculation by writing things down, rather than clicking through a Keynote presentation or typing something on the screen. It’s intended to mimic the live presentation of content on a whiteboard, hence my name for it.

Of course the most well-known examples of “whiteboard” screencasts are the videos at Khan Academy. In the unlikely event you haven’t seen a Khan Academy video before, here’s one:

I do whiteboard screencasts fairly often. I use them sometimes for presenting hand calculations for students to watch and work through before class, and sometimes (probably more frequently) I use them to create additional examples for things I’ve covered in class. This is a really powerful use of screencasts — students often want more examples than there is time for in a class meeting, and whiteboard screencasts give me a way to give students as many examples as they can dream up.

The basic principles of whiteboard screencasts are the same as for other screencasts. You first have to engage in basic planning, which involves defining a tight and coherent scope for your screencast and writing out a script. For whiteboard screencasting, which is more free-form than lecture capture using Keynote or PowerPoint, the scripting process has to be a little more rigorous. Because it’s easy for me to get carried away when talking about something that matters to me, I find it very helpful to work out in advance everything that I am going to do in the screencast, in the order and position on the screen that I intend to do it. I don’t always read words from a script, but in order to make the screencast logical and coherent, I do storyboard what I am going to do and practice with the drawings, erasures, and such. Very little of what I do in a whiteboard screencast is ad-libbed. (If I were better at ad-libbing, that might be different.)

So I will start a whiteboard screencast with something like a mind-map of the topic or topics I intend to address and one, maybe two, examples of that topic. Additional topics go into additional screencasts. I work those examples all the way through to ensure that there are no math or other mistakes and that I don’t get stuck in one of my own calculations. If you think about it, this is just the same kind of planning that goes into a successful whiteboard lecture, so this process is not entirely alien to instructors.

Once the screencast is properly planned, it’s time to put it together. This is where it gets technically somewhat complicated. But a lot of people ask me about the tools I use to make whiteboard screencasts, so hopefully this will be worth it. I use four main tools for doing whiteboard screencasts:

  • Keynote; I’ll explain in a minute.
  • Camtasia, which we saw in the last post in this series.
  • FlySketch, a software app from Flying Meat (they also make the popular personal wiki software VoodooPad). FlySketch puts a transparent overlay on top of any existing objects on your computer screen and allows you to draw freehand, draw geometric shapes, or type text on the overlay. See the link for screenshots and a more detailed description.
  • A Wacom pen tablet. I currently a Wacom Graphire tablet purchased with a grant a few years ago. With my upcoming job change, I have to hand that in when I leave, so I plan on picking up a Bamboo Pen & Touch this fall.

With those tools, here is the workflow I follow for making a whiteboard screencast.

First, open up Keynote and make a single, blank white slide. This is going to be the “whiteboard” itself. Of course you could also use a blank MS Word document, or any other blank white window or screen. Keynote is just for convenience’s sake.

Next, open up FlySketch and lay it completely over the blank window so that the controls are showing above the top of the window:

Then, open Camtasia and create a custom region that encompasses the “whiteboard”. When the video rolls, it will record what is happening on the whiteboard:

And finally — start the video, and start writing on the FlySketch overlay using the Wacom tablet. Before you start recording, make sure to select the pen color and size you want. If you need to change color, size, or pen type during the screencast — say, you want to switch from freehand writing to typing, or drawing a straight line for an axis — you can tap on the appropriate FlySketch control and Camtasia won’t record it because it’s off-screen.

Then you simply record what you need, then stop, and process the video as was described in the previous post in this series. This includes editing out any mistakes and splicing together multiple video clips for the same screencast.

Here’s an example of the finished product:

Although Sal Khan has been my inspiration for doing screencasts, I’ve made some conscious decisions here to do things differently than Khan does. First, I prefer the white background to the black; it’s more familiar to learners and seems cleaner. I also tend to use thicker pen “tips” than Khan does; I tend to think his pens look a little spidery. Also, the Wacom tablet pen is pressure-sensitive, and that feature works better if the pen tip is thicker. Finally, from a planning perspective, my whiteboard screencasts are a lot less conversational than Khan’s videos. Khan tends to shoot from the hip in terms of presentation; this is part of what makes his videos so charming, but I think it also tends to make his videos go longer than they need to. I prefer to make things a bit more efficient and focused and take less time. It also cuts down on mistakes.

I think the hardest part of this process, for me, was mastering the art of writing on the Wacom tablet in one place and having the writing appear on the screen. This is harder than it sounds! At first my handwriting was horrible (I think at the time I likened it to somebody with a brain injury) but eventually I got my act together. I suspect people learning to play the drums or the piano have to go through the same process before it sounds any good.

Another challenge is managing the relatively small amount of physical space you are working with. A Keynote slide is just not a very large place, and it’s easy to run out of room when writing. If this happens, it can be dealt with by just starting another slide and creating a new video clip. But it’s better for the learner to see one example per slide if possible, and making sure this happens is part of that all-important planning process. I find it helpful to practice the presentation not on the screen or a piece of paper but on a 3 x 5 inch notecard, which has something much closer the same proportions for writing as the Keynote slide on the screen. But note that it does take practice — if you just sit down and try to bang out a whiteboard screencast, it’s likely not to be as good or as instructional as possible, and it could end up taking more time in terms of edits and re-takes than it would if you just planned and practiced in the first place.

I’d be interested in hearing any alternative approaches for making these kinds of screencasts. I once wrote Sal Khan and asked him what his tools were, but never got a response, so I just reverse-engineered what he was doing. There may be a better way. Let me know!

Next up will be the final installment in this series, touching on what I called a “demo” screencast. It’s probably what I do the most. Stay tuned!

11 Comments

Filed under Camtasia, Inverted classroom, Screencasts, Teaching, Technology

How I make screencasts: Lecture capture, part 2

Now that school’s out, I’m going to pick up where I left off (two months ago!) in my series on how I make screencasts. So far I’ve made three posts in this series. In the first post we talked about what a screencast is, exactly, and why anybody would want to make one. In the second post, we saw how the elements of careful planning make screencasting a successful experience. And in the most recent post, we took a look at using Keynote (or PowerPoint) to create a lecture-capture screencast.

Before I talk about the other kinds of screencasts I make, I’m going to take this post to describe how I use my go-to tool for screencasting: Camtasia for Mac, specifically how I use it to make lecture capture videos when I’m not using Keynote. (Full disclosure: I was on the beta-testing team for Camtasia for Mac and got a free license for the software for my efforts. But I can definitely say that I’d gladly have paid the $99 for the software otherwise — it’s that useful.) There is a Windows version of Camtasia and a server-oriented variant called Camtasia Relay, and they are all very similar, so what I describe in this post can be used if lots of different situations.

Let’s suppose I have a lecture or presentation that I want to turn into a screencast, which basically means I need to record the presentation as it happens on the screen and add a voice-over. I’ve already described how to do this with Keynote or PowerPoint, but what if you’re using Prezi, Beamer, or some other presentation tool? What I need is a tool that will record stuff happening on the screen that’s separate from the presentation tool itself. That’s where Camtasia comes in.

Camtasia is software that records video of anything happening on your screen — all of it, or part of it — along with any audio you choose to add, including voiceovers. You can record multiple segments of video, edit those segments, and put it all together with transitions and effects. The interface is laid out a lot like iMovie, so Mac users will feel right at home using it.

There are a lot — seriously, a lot — of options for working with video in Camtasia, too many to get into here. I’ll just show an example of a simple lecture capture putting Prezi and Camtasia together.

First, bring up the screen that has the Prezi in it. (For Prezis particularly, creating the lecture capture works best if you download the Prezi to your local drive and then run it in a window, rather than trying to run it on the web.)

Now launch Camtasia. When you do, a little floating pane will come up that looks like this:

The dropdown menu on the left lets you specify which part of the screen you’re going to capture. I usually just select “YouTube HD/720p”, which records essentially the entire screen. I can crop out what I don’t need later. And once I put it on YouTube (which is my usual destination for screencasts) it’ll be in glorious 720p HD.

Once you’ve selected your area, just click the Record button and start presenting, just as you would if you were giving the lecture in front of a live audience. Your lecture is being recorded behind the scenes and all you see is your screen. Warning: Presenting for a screencast feels a lot different than doing it for a live audience because, well, the audience isn’t there. There’s no body language or ambience to add to the presentation. So this will feel a little unusual at first. Also, I can’t stress enough that you should probably go from a prepared script the first few times you do this, rather than try to wing it. It’ll keep you on track and prevent lots of mistakes.

When you stop recording, you’re brought into the main editing area of Camtasia:

The bottom part of this screen is called the “timeline”. Right now, the one clip that I have in the timeline is a partial video of the presentation. It appears as a chunk of the timeline outlined in blue. Inside the timeline you can see the audio levels given as waveforms, and there’s a playhead along the top of the timeline showing you where you are in the video as well as the time.

At this point, what I usually do is check the sound levels first. A lot of times the built-in microphone on my Macbook doesn’t record very loudly. I’ll listen to a bit of the recorded video to check if that is the case. If so, I go and apply the Dynamics Processor effect to the clip I made:

You apply the clip just by dragging it from the effects area directly onto the clip in the timeline. In fact this is how all the effects, transitions, and other features of Camtasia are applied to video. The Dynamics Processor brings all audio levels up to a uniformly audible setting.

If I have the time, I will watch the whole video from start to finish to see if I’m happy with it. If there’s something I need to edit out — I goofed the script, or sneezed, or the phone rang, etc. — I can go back and edit that part out just by putting the playhead just before the mistake:

Then selecting “Split selected at playhead” from the Edit menu; this splits the video clip in two, right where the blooper is. Then move the playhead until just after the mistake, and selecting “Trim Start to Playhead”. This will crop out the blooper from the second clip. Then you can just drag the second clip over next to the first one, and with that, the blooper is edited out.

The ability to edit in such an easy way really changed screencasting for me. You will make mistakes when you screencast, no matter how good or experienced you get. But you don’t want to have to throw away an entire screencast because of one goof. If I am screencasting and I make a mistake, I just pause for a moment, and then I start again from the point of error. The pause will show up on the audio as a flat spot, and I can go back and edit the error out. You cannot do this with the voiceover features of Keynote and PowerPoint, and it makes a huge difference.

If this is just a straight lecture capture — so there’s no other video coming in from a different source — at this point I’m done. The only thing left to do is add the “credits page” that I always put at the end of my screencasts that lists my email, YouTube channel, Twitter, and so on. I have this saved as a PDF. To bring it into the timeline, I go to Import Media:

and select it from the file finder. It then appears as a clip:

I just drag it into the timeline at the end of the video:

And then, for effect, add a fade-in transition from the video to the credits, which I do by finding it in the transitions menu:

And dragging and dropping it in the little seam between the video clip and the credits page:

Now I’m ready to publish. Camtasia allows me to publish the resulting video directly to my YouTube channel using the Share menu:

As you can see, there are options for iTunes and Screencast.com as well. Or you can just choose “Export…” which exports the video to a file format of your choice, for uploading wherever you want.

After I start the process, Camtasia converts the video to Quicktime and then uploads it with the title I gave it. A 10-minute video will take several minutes to complete this process on a Macbook Pro. Your mileage will vary according to your system hardware and your internet connection. After it’s done uploading, I still have to go to YouTube and add metadata. But otherwise that’s it!

What’s nice about Camtasia is that the tool is separate from the presentation tool you’re using. So if you already have the presentation content made up, you can turn it into a screencast quite easily. It doesn’t matter whether it’s Prezi, Beamer, a text document you’re scrolling down, or anything else. And the more you do this, the easier it gets to convert existing presentation content into a mobile device-friendly screencast.

In the next post, I’ll talk about what I call “whiteboard” screencasts, where I record stuff that I am writing on the screen. This is a lot like what Salman Khan at Khan Academy does. Hopefully it won’t be another two months before I get to that.

Enhanced by Zemanta

1 Comment

Filed under Camtasia, Educational technology, Inverted classroom, Teaching, Technology

Any questions about this video?

As part of preparing for our impending move from Indy to Grand Rapids, my family and I have made a couple of visits to the area. These by necessity combine business with pleasure, since our three kids (ages 2, 5, and 7) don’t handle extended amounts of business well. On the last visit, we spent some time at the Grand Rapids Childrens Museum, the second floor of which is full of stuff that could occupy children — and mathematicians — for hours. This “exhibit” was, for me, one of the most evocative. Have a look:

I asked this on Twitter a few days ago, but I’ll repost it here: In the spirit of Dan Meyer’s Any Questions? meme, what questions come to mind as you watch this? Particularly math, physics, etc. questions.

One other thing — just after I wrapped up the video on this, someone put one of the little discs rolling on the turntable and it did about a dozen graceful, perfect three-point hypocycloids before falling off the table.

Enhanced by Zemanta

3 Comments

Filed under Geometry, Math, Problem Solving

Thoughts on the culture of an inverted classroom

I’ve just finished up the spring semester, and with it the second iteration of the inverted classroom MATLAB course. With my upcoming move, it may be a while before I teach another course like this (although my experiments with targeted “flipping” went pretty well), so I am taking special care to unwind and document how things went both this year and last.

I asked the students in this year’s class about their impressions of the inverted classroom — how it’s worked for them, what could be improved, and so on.  The responses fell into one of two camps: Students who were unsure of, or resistant to, the inverted classroom approach at first but eventually came to appreciate its use and get a lot out of the approach (that was about 3/4 of the class), and students who maybe still learned a lot in the class but never bought in to the inverted method. No matter what the group, one thing was a common experience for the students: an initial struggle with the method. This was definitely the case last year as well, although I didn’t document it. Most students found closure to that struggle and began to see the point, and even thrived as a result, while some struggled for the whole semester. (Which, again, is not to say they struggled academically; most of the second group of students had A’s and B’s as final grades.)

So I am asking, What is the nature of that struggle? Why does it happen? How can I best lead students through it if I adopt the inverted classroom method? And, maybe most importantly, does this struggle matter? That is, are students better off as problem solvers and lifelong learners for having come to terms with the flipped classroom approach, or is adopting this approach just making students have to jump yet another unnecessary hurdle, and they’d be just as well off with a traditional approach and therefore no struggle?

I think that the nature of the struggle with the inverted classroom is mainly cultural. I am using the anthropologists’ definition of “culture” when I say that — a culture being a system whereby a group of people assign meaning and value to things.

In particular, the way culture places value on the teacher is radically different between the traditional academic culture experienced by students and the culture that is espoused by the inverted classroom. In the traditional classroom, what makes a “good teacher” is typically that teacher’s ability to lecture in a clear way and give assessments that gauge basic knowledge of the lecture. In other words, the teacher’s value hinges on his or her ability to talk.

In the inverted classroom, by contrast, what makes a “good teacher” is his or her ability to create good materials and then coach the students on the fly as they breeze through some things and get inexplicably hung up on others. In other words, the teacher’s value hinges on his or her ability to listen.

Many students who are in that other 25% who never buy into the inverted classroom think that teachers using this approach are not “real” teachers at all. As one student put it, when they pay a teacher their salary, they expect the teacher to actually teach. What is meant by “teaching” here is an all-important question. Well, on the reverse side, if there were such a thing as a group of students who had only experienced the inverted classroom their entire lives and then entered into a traditional classroom, those students would think they are experiencing the worst teacher in the history of academia. The guy never shuts up! He only talks, talks, talks! We have to fight to get a word in edgewise, we get only brief chances to work on things when he is there, and we’re always booted unceremoniously out of the lecture hall (we used to call them “classrooms”) and left to fend for ourselves on all this difficult homework!

I’m convinced that bridging this cultural gap is what takes up most of the time and effort in an inverted classroom — forget about screencasts!

Enhanced by Zemanta

6 Comments

Filed under Education, Educational technology, Inverted classroom, Teaching

Three things I wish Google Documents would let me do

Let me preface this article by saying that I really like Google Documents. It’s a fantastic set of tools that extends basic office functionality to the web in really compelling ways. I’ve been incorporating Google Docs pretty centrally in my courses for the last few years — for example, I no longer hand out paper syllabi on the first day of classes but instead write the syllabi on GDocs and distribute the links; and I’ve given final exams on Google Docs with links to data that are housed in Google Spreadsheets. I love being able to create a document on the web and just leave it there for students (or whoever) to come see, collaborate, and comment — without having to keep track of paper and with virtually zero chance of losing my data. (If Google crashes, we have much bigger problems than the loss of a set of quiz data.)

But like anything, Google Documents isn’t perfect — and in particular, there are at least three things that I wish Google Documents would do that would push my really like-ness to unqualified love:

1. Bring back the old Equation Editor. A couple of years ago, Google rolled out an equation editor for Google Docs that was just beautiful — a small editor that had point-and-click features for adding equations and the ability to parse \LaTeX commands. In other words, it was a mini-\LaTeX editor built right into Google Docs that would implement almost any of the essential functionality of \LaTeX, including matrices, multi-line equations, and more. I remember discovering this editor two years ago and promptly writing up every single one of my linear algebra activities as Google Documents. Then, inexplicably, Google replaced this sweet \LaTeX goodness with a stripped-down equation editor that pales in comparison, supporting only a tiny fraction of \LaTeX‘s command set, and in particular no matrices or multi-line equations. And the “new” editor is clunky and doesn’t seem to produce very good results. I have yet to hear a satisfactory explanation of why this change to a clearly-inferior editor was made. It can’t be because it was overtaxing Google’s system! This is Google, for goodness’ sake, and it’s 2011 — can’t we have a real \LaTeX editor for Google Docs? There’s already one for GMail, you know.

2. Allow comments and discussion threads on PDF’s uploaded to Google Documents. From a teacher’s perspective, one of the most compelling possibilities for Google Docs is to have students upload their class work on Google Docs and then initiate a running discussion thread on that work. Such a thing would replace the usual system of handing in work and having the teacher write comments on it, thereby turning the grading process into something more like a conversation. You can do this with documents created in Google Docs. But if you want students to create mathematical work — since, as I just noted, the current equation editor for GDocs doesn’t get the job done — students would have to create their work in MS Word or \LaTeX, convert to a PDF, and then upload it. No problem, except that discussion threads and comments aren’t allowed on uploaded documents. The option simply isn’t there in the menu system. Google acknowledges that comments and comment threads are only available on newly-created documents, and functionality is coming for older documents — but no word on uploaded documents. If this could be made to happen, grading student work suddenly gets a whole lot more interesting (and valuable for students).

3. Auto-shorten URL’s of links to documents. OK, this is pretty minor, because all I have to do is copy the URL given to me by Google and run it through bit.ly. But since Google already has its own URL shortener, why not just auto-compress the URL using that shortener at the moment the URL is generated? It saves a few clicks and makes users happier because we don’t have to deal with URL’s that are multiple dozens of characters long. And more practically, it makes Google Docs easier for novices to use — many new users (I’m envisioning a good portion of students in my classes who I’d like to get to use Google Docs) have no idea that URL shorteners exist.

What else would you add to this list? Better yet, are there hacks or workarounds that resolve these issues? (Or, thirdly, am I just mistaken on any of this?)

Enhanced by Zemanta

1 Comment

Filed under LaTeX, Social software, Teaching, Technology, Web 2.0

The “golden moment”

We’re in final exams week right now, and last night students in the MATLAB course took their exam. It included some essay questions asking for their favorite elements of the course and things that might be improved in the course. I loved what one of my students had to say about the assignment in the course he found to be the most interesting, so I’ve gotten permission from him to share it. The lab problem he’s referring to was to write a MATLAB program to implement the bisection method for polynomials.

It is really hard to decide which project I found most interesting; there are quite a few of them. If I had to choose just one though, I would probably have to say the lab set for April 6. I was having a really hard time getting the program to work, I spent a while tweaking it this way and that way. But when you’re making a program that does not work yet, there is this sort of golden moment, a moment when you realize what the missing piece is. I remember that moment on my April 6 lab set. After I realized what it was, I could not type it in fast enough I was so excited just to watch the program work. After hitting the play button, that .3 seconds it takes for MATLAB to process the program felt like forever. I actually was devastated that I got an error, and thought I had done it all wrong once again, but then I remembered I had entered the error command so it would display an error. I actually started laughing out loud in the lab, quite obnoxiously actually.

Yes!  As somebody once said, true learning consists in the debugging process. And that’s where the fun in learning happens to lie, too. Let’s give students as many shots as possible to experience this process themselves.

Enhanced by Zemanta

2 Comments

Filed under Critical thinking, Education, Inverted classroom, MATLAB, Teaching, Technology