Tag Archives: LaTeX

Three things I wish Google Documents would let me do

Let me preface this article by saying that I really like Google Documents. It’s a fantastic set of tools that extends basic office functionality to the web in really compelling ways. I’ve been incorporating Google Docs pretty centrally in my courses for the last few years — for example, I no longer hand out paper syllabi on the first day of classes but instead write the syllabi on GDocs and distribute the links; and I’ve given final exams on Google Docs with links to data that are housed in Google Spreadsheets. I love being able to create a document on the web and just leave it there for students (or whoever) to come see, collaborate, and comment — without having to keep track of paper and with virtually zero chance of losing my data. (If Google crashes, we have much bigger problems than the loss of a set of quiz data.)

But like anything, Google Documents isn’t perfect — and in particular, there are at least three things that I wish Google Documents would do that would push my really like-ness to unqualified love:

1. Bring back the old Equation Editor. A couple of years ago, Google rolled out an equation editor for Google Docs that was just beautiful — a small editor that had point-and-click features for adding equations and the ability to parse \LaTeX commands. In other words, it was a mini-\LaTeX editor built right into Google Docs that would implement almost any of the essential functionality of \LaTeX, including matrices, multi-line equations, and more. I remember discovering this editor two years ago and promptly writing up every single one of my linear algebra activities as Google Documents. Then, inexplicably, Google replaced this sweet \LaTeX goodness with a stripped-down equation editor that pales in comparison, supporting only a tiny fraction of \LaTeX‘s command set, and in particular no matrices or multi-line equations. And the “new” editor is clunky and doesn’t seem to produce very good results. I have yet to hear a satisfactory explanation of why this change to a clearly-inferior editor was made. It can’t be because it was overtaxing Google’s system! This is Google, for goodness’ sake, and it’s 2011 — can’t we have a real \LaTeX editor for Google Docs? There’s already one for GMail, you know.

2. Allow comments and discussion threads on PDF’s uploaded to Google Documents. From a teacher’s perspective, one of the most compelling possibilities for Google Docs is to have students upload their class work on Google Docs and then initiate a running discussion thread on that work. Such a thing would replace the usual system of handing in work and having the teacher write comments on it, thereby turning the grading process into something more like a conversation. You can do this with documents created in Google Docs. But if you want students to create mathematical work — since, as I just noted, the current equation editor for GDocs doesn’t get the job done — students would have to create their work in MS Word or \LaTeX, convert to a PDF, and then upload it. No problem, except that discussion threads and comments aren’t allowed on uploaded documents. The option simply isn’t there in the menu system. Google acknowledges that comments and comment threads are only available on newly-created documents, and functionality is coming for older documents — but no word on uploaded documents. If this could be made to happen, grading student work suddenly gets a whole lot more interesting (and valuable for students).

3. Auto-shorten URL’s of links to documents. OK, this is pretty minor, because all I have to do is copy the URL given to me by Google and run it through bit.ly. But since Google already has its own URL shortener, why not just auto-compress the URL using that shortener at the moment the URL is generated? It saves a few clicks and makes users happier because we don’t have to deal with URL’s that are multiple dozens of characters long. And more practically, it makes Google Docs easier for novices to use — many new users (I’m envisioning a good portion of students in my classes who I’d like to get to use Google Docs) have no idea that URL shorteners exist.

What else would you add to this list? Better yet, are there hacks or workarounds that resolve these issues? (Or, thirdly, am I just mistaken on any of this?)

Enhanced by Zemanta
Advertisements

1 Comment

Filed under LaTeX, Social software, Teaching, Technology, Web 2.0

How I make screencasts: Lecture capture, part 1

Keynote (presentation software)

Image via Wikipedia

Sorry for the time in between posts lately. It’s been an odd mix of attending conferences, getting ready to attend conferences, and spending time in the hospital being treated for skin infections picked up at those conferences for the last couple of weeks. Long story. Let’s talk about something more pleasant than cellulitis, namely screencasting.

So far I’ve posted about the general idea of screencasting and what I do with screencasts, and I’ve posted about the all-important planning phase of screencasating. Now I’m ready to start getting to the nuts and bolts. Of the three kinds of screencasts I do, probably the simplest is the lecture capture. In a lecture capture I am simply recording a slide presentation or a Prezi with a voiceover. Here’s an example, which is an overview of the first test being given to a freshman calculus class:

All this screencast is, is a Keynote slide deck that I prepared with a voiceover. Sometimes this is all you need for the task you want to accomplish. For those non-Mac people out there, Keynote is Apple’s version of PowerPoint — a presentation software tool that comes with the iWork office suite. If you have a Mac and don’t use iWork, it’s well worth looking into. Many people find Keynote to be much better designed and easier to use than PowerPoint or any of the other presentation tools out there.

The basic gist behind a lecture capture is that you are just using a presentation tool to give a normal presentation, and capturing the audio and the video that goes with it. This does not include any sort of writing on the board; I’ll deal with that in the next post in this series on “whiteboard” screencasts. But everyone should note well that the lecture capture approach is often part of my screencasts but rarely the entire thing. Many of my MATLAB screencasts are set up by brief, 1- to 2-minute long lecture captures before cutting away to a live screencast straight out of MATLAB. So even if lecture capture doesn’t sound like your thing, it’s worth thinking about.

With Keynote, doing a lecture capture screencasts is very easy. After planning it out, you just make the slide deck exactly as you would if you were to present it live. Then, instead of clicking the “Play” button to do the slideshow, click on Play > Record Slideshow:

This put the slideshow into presentation mode on your screen but also record audio from the microphone at the same time. From here, you just go through your slideshow as you would normally, and whatever goes into the mic gets recorded. When you’re done recording, go to Share > Export…:

There’s an option on the screen that comes up next to export to Quicktime, and that’s what to select. (I use the default video/audio options; you can tweak these.) And presto — you have a nice, high-quality Quicktime movie of your lecture that’s suitable for sharing online or burning to a disc.

PowerPoint (at least the version I have, which is PowerPoint 2008 for the Mac) has all of these capabilities as well. In PowerPoint, you would make up your slide deck as usual and then go to Slide Show > Record Narration…:

What happens next is a bit different from Keynote. PowerPoint does what it says: It attaches an audio narration to each slide as you click through it in presentation mode. There is the option — but not a requirement — to record the timing of the slide transitions as well. In Keynote, the transitions are automatically timed. To turn this voiceover-plus-presentation into a movie, just go to File > Save as Movie… and there are plenty of options to choose from.

I should mention that as for a microphone, I just use the built-in microphone on my Macbook Pro. I have used a USB headset microphone before and I think it did improve the audio quality noticeably, but to be honest with you: I’m really cheap. If I can get good audio quality that nobody complains about using the built-in mic, why spend $50 to get very good audio quality with a USB mic? One of these days I’ll break down and buy one, I’m sure. Until then I pinch my pennies.

There are a couple of issues to think about at this point regarding lecture captures.

  • What if you want to use some other presentation tool besides Keynote or PowerPoint, for example the Beamer package for \LaTeX, or Prezi?
  • What if you wanted to record portions of a lecture at a time and stitch them all together later, or conversely what if you wanted/needed to edit out or enhance portions of a lecture capture you created with Keynote or PowerPoint?

For those kinds of tasks, I would turn to my #1, go-to tool for almost all my screencasting needs: Camtasia for Mac. Camtasia is an all-purpose video and screencasting tool that does an outstanding job with just about anything I could possibly want to do with a basic screencast. There’s so much to Camtasia, and we are going to need to refer to it so much in later posts about whiteboard and demo screencasts, that I’m going to deal with Camtasia (and its alternatives) in a separate post.

Meanwhile, if you have other tricks and tips about lecture capture screencasting, please share in the comments.

Enhanced by Zemanta

6 Comments

Filed under Apple, Camtasia, Screencasts, Technology

How I make screencasts: Chapter 0

Since I started to put serious amounts of time and effort into screencasting last summer, I’ve gotten a lot of requests to blog about how I go about making these things. Starting with this post, I’m going to do a multi-part series here about making screencasts — or at least how I make screencasts, which is a long way from perfect or canonical, but it’s what people asked for! I hope it’s useful for people who are interested in this kind of thing and need some pointers; and I hope too that those with more experience and better ideas than I have can share.

First, let’s start with a few FAQ’s.

Q: What is a screencast?

A: A screencast is a video of stuff that is happening on your computer screen. There is often, but not always, some kind of voiceover happening in the background as well. So a screencast can be a lot of different things: A recorded Prezi or PowerPoint slide presentation; a demo of computer software; a “whiteboard” lecture with audio capture; a video of you playing Angry Birds; or any linear combination of these.

Q: What’s the point of a screencast?

A: I suppose you could do just about anything with a screencast, but mainly the point is to instruct. Some people make short screencasts to show a remote collaborator or student how to do some little task on their computer, like this one I made on the fly in Linear Algebra class last Thursday morning to show students how to get MATLAB to produce \LaTeX code. Or you can record partial or entire lectures (like many of the ones I did for my department’s YouTube channel) for students to watch outside of class. Or you can record lengthy demos of software usage like I have done in my ongoing series of MATLAB screencasts. Or you can record every level of Angry Birds you play. Suit yourself.

The screencast is just a means of conveying some process or stream of information that can be represented on the screen and therefore captured using software and disseminated on the web. It’s a pretty much wide-open medium.

Q: So what kinds of software and hardware and other stuff do you use?

This is a good question, but at this point I have to stop the FAQ’s and explain why there are going to be multiple posts in this series. I have a toolbox of software and hardware items that I use, but the exact combination that I use depends on the kind of screencast that I am trying to make. Basically, there are three different kinds of screencasts that I make:

  • Lecture capture screencasts, where I am going through a Prezi or slide deck and giving audio narration;
  • Whiteboard screencasts, where I am using an input device to hand-write things on the screen so that it looks like a typical whiteboard presentation; and
  • Demo screencasts, where I am doing a straight-up screen capture of something happening on my computer (as opposed to a presentation or “whiteboard” work) in real time.

Each of these kinds of screencasts requires a different set of software and hardware tools, as well as a different set of approaches for actually making them. So I’m going to spend at least one post on each. Actually, most of my screencasts are really combinations of these; for example a lot of the MATLAB screencasts start and end with a lecture capture and have MATLAB demos in the middle.

In the next post, I’ll start things off by focusing on lecture capture screencasts and how I work with those. They’re probably the simplest of the three kinds I make.

Do you have any specific question or topic you’d like me to address as part of this series?

Enhanced by Zemanta

6 Comments

Filed under Inverted classroom, Profhacks, Screencasts, Teaching, Technology

Five reasons you should use LaTeX and five tips for teaching it

Over the weekend a minor smack-talk session opened up on Twitter between Maria Andersen and about half a dozen other math people about MathType versus \LaTeX. Maria is on record as being pro-MathType and yesterday she claimed that \LaTeX is “not intuitive to learn”.  I warned her that a pro-\LaTeX  blog post was in the offing with those remarks, and so it comes to this. \LaTeX is accessible enough that every math teacher and every student in a math class at or above Calculus can (and many should) learn \LaTeX and use it for their work. I have been using \LaTeX for 15 years now and have been teaching it to our sophomore math majors for five years. I can tell you that students can learn it, and learn to love it.

Why use \LaTeX when MathType is already out there, bundled with MS Word and other office programs, tempting us with its pretty point-and-click interface? Five reasons.

  1. \LaTeX looks better. Seriously. MathType is getting better at visual appeal — it doesn’t look appalling any more — but nothing beats \LaTeX for refinement and polish.
  2. \LaTeX is the mathematical typesetting standard in all technical disciplines and in many related fields. Most, if not all, major publications in math, computer science, engineering, and physics use \LaTeX as the preferred typesetting system. arXiv prefers \LaTeX over all other formats.
  3. \LaTeX is becoming a standard elsewhere, especially on the web. Last year, Google Documents added an equation editor that is basically a stripped-down \LaTeX editor with a point-and-click interface. The wildly popular online presentation tool Prezi has said that \LaTeX integration is coming. WordPress.com blogs like Casting Out Nines can do \LaTeX, and so can Wikispaces and several other web services. Online \LaTeX typesetters abound, and more are popping up. The web likes open standards, and since MathML is all but impossible to use, \LaTeX fills a gaping need for free, open-source mathematical typesetting. Which brings me to the next point:
  4. \LaTeX is free. Free as in beer and free as in freedom. You can download it right now for just about any operating system imaginable, and have the full strength of the system available to you at no cost. And this is a system that has been around for 40 years (if you count TeX) and has millions of users, many of whom actively contribute to the further development of the system by writing specialized packages and macros. This is in stark contrast to MathType, which is proprietary and closed, and although you get the “Lite” version bundled in with office software, the full version will set you back at least $37.
  5. \LaTeX is what you make it. You can use \LaTeX with a point-and-click IDE, or you can type everything out by hand with a text editor and compile from the command line, or anything in between. You can tinker with the low-level creation of fonts or just quickly type out a letter. It’s up to the user. Other proprietary programs force a menu-driven point-and-click approach upon you, which you may like but may not like.

Others may add to these in the comments. But if \LaTeX is so great, how come nobody ever seems to learn it until graduate school? I’m not sure, but it’s not because \LaTeX is counterintuitive. It’s not totally obvious, either, but with a little guidance, \LaTeX can make perfect sense even to high school students. If you’re a math or science teacher, make it a project to learn \LaTeX yourself and start using it in your classes, then teach it to your students. Here are five ways to make that a painless process.

  1. Use an IDE or a user-friendly text editor rather than a plain, no-frills text editor or EMACS. For Windows machines, use the free TeXNicCenter IDE that gives point-and-click code insertion (or you can just type the code in) with syntax highlighting. On Macs, use TextMate if you have the money and Aquamacs if you don’t; both of these are text editors with tons of great \LaTeX goodies built in. (In TextMate, for instance, typing begin and hitting the Tab key automatically creates an environment with the matching \end{}. ) On Linux, try Kile. These provide user-friendly interfaces and syntax highlighting that take the edge off some of the learning curve.
  2. Have someone else do the installation and setup, or provide a total handholding guide for doing it. The only really hard thing about using \LaTeX is simply getting it to work in the first place. This is one of the advantages MathType has over \LaTeX, but the payoff is worth it. New users will need to be walked through the whole process in high-definition detail. But once that’s over, the fun begins.
  3. Start small and simple, and build gradually. When first getting students to use \LaTeX, restrict them to just a small, relatively simple document, one that’s mostly text with a little bit of math typsetting required. Small, early successes will convince them that learning \LaTeX is worthwhile. I like to give out my training videos to students and have them learn the system on their own; then have a grace period where students get extra credit for doing their assignments in \LaTeX; and then start requiring it after the grace period expires.
  4. Use it yourself. Students will learn from your example. Try writing your next syllabus in \LaTeX; and your class handouts; and your tests (perhaps using the excellent exam package). When you use it, and students begin to use it, they see that they are producing math that looks as good as what the pros do, and they get excited.
  5. When you give a document made with \LaTeX, also give out the source code that generated it. Students can then look at what you created, ask “How’d s/he do that?”, and get the answer immediately from your code and do it themselves. I myself have learned about half the \LaTeX I know from this method, and adapting/tweaking someone else’s code is a time-honored and very effective means of learning almost anything done on a computer.

Once they are over the initial learning curve and producing beautiful mathematical documents, my students look back on the dark days of MS Equation Editor and wonder, along with me, why anybody would put themselves through something like that. Happy \LaTeX-ing!

15 Comments

Filed under LaTeX, Math, Profhacks, Social software, Teaching, Technology, Twitter, Uncategorized

12 videos for getting LaTeX into the hands of students

There seem to be two pieces of technology that all mathematicians and other technical professionals use, regardless of how technophobic they might be: email, and \LaTeX. There are ways to typeset mathematical expressions out there that have a more shallow learning curve, but when it comes to flexibility, extendability, and just the sheer aesthetic quality of the result, \LaTeX has no rival. Plus, it’s free and runs on every computing platform in existence. It even runs on WordPress.com blogs (as you can see here) and just made its entry into Google Documents in miniature form as Google Docs’ equation editor. \LaTeX is not going anywhere anytime soon, and in fact it seems to be showing up in more and more places as the typesetting system of choice.

But \LaTeX gets a bad rap as too complicated for normal people to use. It seems to be something people learn only in graduate school, with few undergraduates — and even fewer high school students — ever seeing it, much less using it. There is a grain of truth there; \LaTeX is not a WYSIWYG word processor, and the near-programming aspect of using \LaTeX can overwhelm users used to pointing-and-clicking for everything.

But I think that the benefits of using \LaTeX outweigh the costs, and undergraduates and high school students can, and ought to, learn how to use \LaTeX as fluently as they use a word processor for other courses. A couple of years ago, I put together a series of twelve screencasts for use in our sophomore “transition-to-proof” class on learning \LaTeX. I put these screencasts online, but mainly they were only advertised to my students and colleagues. Now, however, I’d like to throw these out there for everyone to use.

All twelve of these are done on a Windows system running MiKTeX and the free \LaTeX IDE known as TeXNicCenter.  This provides students with as close to a point/click interface to \LaTeX as you could expect to get. Within that context, there are two basic intro videos:

These two videos are enough to learn how \LaTeX works and will allow you to make a simple file with uncomplicated math and text in it. The remaining 10 videos follow from these two. Some are prerequisites for the others — and those prereqs are stated explicitly at the beginning of any video that has them — but if you watch them in the following order there will be no dependency problems:

Some of these are pretty long, but all totalled (including the two “basics” videos) this is less than two hours of viewing.

When I’ve used these in class, I give students some printed instructions on how to download and configure MiKTeX and TeXNicCenter, and then I have them watch these videos out of class. They are instructed to work along with the videos. I give them about a week to do so. Within that week, if there’s a problem set or something else in the class that could be done with \LaTeX, I’ll offer extra credit to students to do so, to incentivize their learning the system. After the end of that week, I will insist that all major assignments have to be done in \LaTeX, or else the assignment gets a grade of “0”.

Students have sometimes struggled to get up the learning curve, but if they’re allowed and encouraged to help each other, everyone eventually gets to the point where they are quite fluent writing up homework and so on. Students have even elected to use \LaTeX on assignments in other courses, even non-math courses.

I’m going to use these videos in linear algebra this semester (our transition-to-proof course is now defunct) and I’ll be making up a new screencast on MATLAB and \LaTeX. Later, probably during the summer, I’ve been thinking about redoing the entire video series; I now have better screencasting tools than I used to have, and I’d like to keep all the videos under 10 minutes so they can go on YouTube.

So feel free to use these (attributing authorship to me is appreciated but not required), and if you have suggestions or comments, please email them or leave them below.

7 Comments

Filed under LaTeX, Linear algebra, Math, Problem Solving, Technology

LaTeX as a word processor?

Good article here at The Productive Student giving five reasons why students should use \LaTeX as their word processor and not Microsoft Word:

1. Never worry about formatting again.
2. It looks way better. [By the way: Very nice article on LaTeX’s typesetting at that link.]
3. It won’t crash: LaTeX is basically a plain text file. You can edit it anywhere, in any text editor, and it basically can’t crash on you. File size is very small which makes it very portable.
4. It’s great for displaying equations, which is why it’s the leading standard among sciencitifc scholars.
5. It fits in with the workflow of a student and allows you to do one thing well: Write.

The writer also shares some of his practices for writing papers (not necessarily math or science papers) with \LaTeX, stressing \LaTeX‘s ability to handle bibliographic data as the “killer feature”.

\LaTeX was not designed to be a word processor, so there are some downsides for using \LaTeX for word processing. Graphics are not easy to handle, if you are going to include any in your document. Some basic formatting tasks like footers and margin settings are tricky to manipulate. And above all, there is a fairly formidable learning curve to \LaTeX, not the least of which is the fact that you have to install things yourself (something a surprisingly large number of students don’t know how to do) and use a text editor. (We forget that text editors are essentially an alien world to students who are raised on GUI’s for everything.) And for collaborative projects, Word’s ability to insert comments and track changes in a document is really essential.

Still, I think most college students can learn \LaTeX if they put their minds to it, and the fact that it’s free and portable and “future-proof” is awfully appealing in a world where this year’s version of Word can’t be trusted to interoperate with last year’s.

Finally, I think there’s a lot to be said for something the article brings up as well: You should use a text editor to write content, and a word processor to format it. Type it up in a basic editor or Google Docs, and then import it into your favorite proprietary program(s) to make it look nice. Separating content from form will save a lot of people headaches and improve their writing as well.

[h/t AcademHack]

6 Comments

Filed under GTD, Higher ed, LaTeX, Profhacks, Study hacks

LaTeX-produced PDF’s not looking right in Preview?

I’ve been noticing since upgrading to Leopard last week that PDF’s that are made using LaTeX do not always look right in Preview. Here’s the same PDF made using LaTeX (TeXShop, to be exact), opened three times in immediate succession using Preview (click to enlarge each):

strange-latex-pdf.jpgstrange-latex-pdf-2.jpgstrange-latex-pdf-3.jpg

The third one (rightmost) finally looks like it’s supposed to, but the other two have this strange-looking font substitution for text, and the math is just completely out of whack.

Again, this is the same PDF opened up, then closed, then opened again right after that, then again. No additional LaTeX builds were done. Also, the PDF viewer that comes with TeXShop had the same problems with fonts.
Anybody have a thought as to what’s going on here?

12 Comments

Filed under Apple, LaTeX, Technology