# Tag Archives: Mathematica

## Conrad Wolfram’s vision for mathematics education

A partial answer to the questions I brought up in the last post about what authentic mathematics consists of, and how we get students to learn it genuinely, might be found in this TED talk by Conrad Wolfram called “Teaching kids real math with computers”. It’s 17 minutes long, but take some time to watch the whole thing:

Profound stuff. Are we looking at the future of mathematics education in utero here?

## Courses and “something extra”

Some of the most valuable courses I took while I was in school were so because, in addition to learning a specific body of content (and having it taught well), I picked up something extra along the way that turned out to be just as cool or valuable as the course material itself. Examples:

• I was a psychology major at the beginning of my undergraduate years and made it into the senior-level experiment design course as a sophomore. In that course I learned how to use SPSS (on an Apple IIe!). That was an “extra” that I really enjoyed, perhaps moreso than the experiment I designed. (I wish I still knew how to use it.)
• In my graduate school differential geometry class (I think that was in 1995), we used Mathematica to plot torus knots and study their curvature and torsion. Learning Mathematica and how to use it for mathematical investigations were the “something extra” that I took from the course. Sadly, the extras have outlived my knowledge of differential geometry. (Sorry, Dr. Ratcliffe.)
• In the second semester of my graduate school intro abstract algebra class, my prof gave us an assignment to write a computer program to calculate information about certain kinds of rings. This was a small assignment in a class full of big ideas, but I had to go back and re-learn my Pascal in order to write the program, and the idea of writing computer programs to do algebra was a great “extra” that again has stuck with me.

Today I really like to build in an “extra”, usually having something to do with technology, into every course I teach. In calculus, my students learn Winplot, Excel, and Wolfram|Alpha as part of the course. In linear algebra this year I am introducing just enough MATLAB to be dangerous. I use Geometers Sketchpad in my upper-level geometry class, and one former student became so enamored with the software that he started using it for everything, and is now considered the go-to technology person in the school where he teaches. In an independent study I am doing with one of my students on finite fields, I’m having him learn SAGE and do some programming with it. These “extras” often provide an element of fun and applicability to the material, which might be considered dry or monotonous if it’s the only thing you do in the class.

What kinds of “extras” were standouts for you in your coursework? If you’re a teacher, what kinds of “extras” are you using, or would you like to use, in your classes?

## Wolfram|Alpha and the shrinking future of the graphing calculator

Image via Wikipedia

By now, you’ve probably heard about Wolfram|Alpha, the “computational knowledge engine” that was recently rolled out by the makers of Mathematica. If you haven’t, here’s a good place to start. There is considerable debate among ed-tech people as to exactly what kind of impact Wolfram|Alpha, abbreviated W|A, is going to have in education. For me, W|A is still a little raw and gives back  too many “Wolfram|Alpha isn’t sure what to do with your input” responses when given mathematically legitimate (at least they seem so to me) queries. But the potential is there for W|A to be a game-changing technological advance, doing for quantitative information what Google did for text and web-based information back in the 90’s. (W|A is already its own verb.)

One thing that seems clear is that, with technology available that is free and powerful and hardware-agnostic, technology that previously has ruled the ed-tech roost can’t survive for much longer. I’m thinking particularly of the graphing calculator. These have been a fixture in math education, especially at the pre-college level, for the better part of 20 years. But now here is W|A, which can graph functions, perform symbolic algebra and calculus computations, even solve differential equations and do number theory and statistics and all manner of interesting stuff besides, including but very much not limited to mathematics. In short, it does everything a graphing calculator does. But, importantly: W|A is free, runs on any web-enabled device (including, as I can attest to by experience, an iPod touch), is fast, is portable (see the links I just shared?), and — perhaps most importantly of all —  has an army of developers who are constantly adding new features into the system.

You could spend \$150 to get the latest and greatest from Texas Instruments, a handheld device that does what a graphing calculator does — but no more. (Here’s my first-hand take on the NSpire and details on what I see as its demerits.) Or, you could spend a little more than twice that much and get a netbook computer that gives you access to W|A as well as a suite of office tools and more. Computing hardware has become so small and cheap, and online quantitative tools so functional and powerful, that it’s very hard to see how graphing calculators can survive the next 5 years.

If graphing calculators do survive, it will be for one main reason: The AP exams. I was talking with a local high school AP Calculus teacher this week who impressed on me that  she cannot afford to drop graphing calculators and move on to using netbooks or some other more sensible technology because, quite simply, there are questions on the AP Calculus exams that require the use of graphing calculators. Students have to have total fluency with graphing calculators — and not some other, calculator-like technology — in order to do as well as they possibly can on the exam, which is part of this teacher’s professional responsibility. The AP already succeeded in killing the TI-92 calculator — a really good technology for its time, when laptops still weighed 15 pounds and costs thousands of dollars — for no better reason than because it had a QWERTY keyboard. Today, the AP might succeed in keeping W|A and other similiarly useful, perhaps even transformative, technologies out of the hands of students pretty much for the same reasons, which is a real shame and quite backwards-looking.

But then again, I don’t know what the AP folks have in mind. Perhaps there are plans afoot to migrate the AP exams away from dependency on graphing calculators. It certainly wouldn’t take much for the AP folks to write their own lightweight graphing tool that does nothing more than plot functions, find intersection points, shade in areas, and do numerical integration (rarely are graphing calculators used on the AP free-response portion for more than these four things). Make it extremely basic, put it on the web, free for all to use, and provide it on specialized computers for students taking the exam. That way, students can learn how to use technology rather than learn how to use a graphing calculator, and both teachers and students can be freer to choose the extent and type of technology they want to use in their classes. And such a thing would probably have a longer shelf life than any TI calculator for sale or in production.